Stabilization of Oscillations in a Periodic System by Choosing Appropriate Couplings

 
PIIS000523100002840-8-1
DOI10.31857/S000523100002840-8
Publication type Article
Status Published
Authors
Affiliation: Institute of Control Sciences RAS
Address: Moscow, Russian Federation
Affiliation: Institute of Control Sciences RAS
Address: Russian Federation, Moscow
Journal nameAvtomatika i Telemekhanika
EditionIssue 12
Pages34-43
Abstract

   

Keywords
Received03.12.2018
Publication date11.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1507

Readers community rating: votes 0

1. Morozov N.F., Tovstik P.E. Transverse Rod Vibrations under a Short-term Longitudinal Impact // Doklady Physics. 2013. V. 58. No. 9. P. 387–391.

2. Kovaleva A., Manevitch L.I. Autoresonance Versus Localization in Weakly Coupled Oscillators // Physica D: Nonlinear Phenomena. 2016. V. 320. 15 Apr. P. 1–8.

3. Kuznetsov A.P., Sataev I.R., Tyuryukina L.V. Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatel'nykh ostsillyatorov Van der Polya // Nelinejnaya dinamika. 2011. T. 7. № 3. S. 411–425.

4. Rompala K., Rand R., Howland H. Dynamics of Three Coupled Van der Pol Oscillators with Application to Circadian Rhythms // Comm. Nonlin. Sci. Num. Simul. 2007. V. 12. No. 5. P. 794–803.

5. Yakushevich L.V., Gapa S., Awrejcewicz J. Mechanical Analog of the DNA Base Pair Oscillations // 10th Conf. on Dynamical Systems Theory and Applications. Lodz: Left Grupa, 2009. P. 879–886.

6. Kondrashov R.E., Morozov A.D. K issledovaniyu rezonansov v sisteme dvukh urav- nenij Dyuffinga–Van der Polya // Nelinejnaya dinamika. 2010. T. 6. № 2. S. 241–254.

7. Danzl P., Moehlis J. Weakly Coupled Parametrically Forced Oscillator Networks: Existence, Stability, and Symmetry of Solutions // Nonlin. Dynamics. 2010. V. 59. No. 4. P. 661–680.

8. Lazarus L., Rand R.H. Dynamics of a System of Two Coupled Oscillators which are Driven by a Third Oscillator // J. Appl. Nonlin. Dynam. 2014. V. 3. No. 3. P. 271–282.

9. Kawamura Y. Collective Phase Dynamics of Globally Coupled Oscillators: Noiseinduced Anti-phase Synchronization // Physica D: Nonlinear Phenomena. 2014. V. 270. No. 1. P. 20–29.

10. Peng Du, Michael Y. Li. Impact of Network Connectivity on the Synchronization and Global Dynamics of Coupled Systems of Differential Equations // Physica D: Nonlinear Phenomena. 2014. V. 286–287. 15 Oct. 2014. P. 32–42.

11. Buono P.-L., Chan B.S., Palacios A., et al. Dynamics and Bifurcations in a Dnsymmetric Hamiltonian Network. Application to Coupled Gyroscopes // Physica D: Nonlinear Phenomena. 2015. V. 290. No. 1. P. 8–23.

12. Vu T.L., Turitsyn K. A Framework for Robust Assessment of Power Grid Stability and Resiliency // IEEE Trans. Automat. Control. 2017. V. 62. No. 3. P. 1165–1177.

13. Amelina N.O. i dr. Problemy setevogo upravleniya. M.–Izhevsk: Institut kom- p'yuternykh issledovanij, 2015.

14. Tkhai V.N. Model with Coupled Subsystems // Autom. Remote Control. 2013. V. 74. No. 6. P. 919–931.

15. Martynyuk A.A., Chernetskaya L.N., Martynyuk V.A. Weakly Connected Nonlinear Systems. Boundedness and Stability of Motion. Boca Raton, FL: CRC Press, 2013.

16. Tkhai V.N. Stabilizing the Oscillations of an Autonomous System // Autom. Remote Control. 2016. V. 77. No. 6. P. 972–979.

17. Barabanov I.N., Tureshbaev A.T., Tkhai V.N. Basic Oscillation Mode in the Coupled- Subsystems Model // Autom. Remote Control. 2014. V. 75. No. 12. P. 2112–2123.

18. Malkin I.G. Teoriya ustojchivosti dvizheniya. M.: Nauka, 1966.

19. Malkin I.G. Nekotorye zadachi teorii nelinejnykh kolebanij. M.: Gostekhizdat, 1956.

20. Tkhai V.N. Stabilization of Oscillations in a Coupled Periodic System // Autom. Remote Control. 2017. V. 78. No. 11. P. 1967–1977.

Система Orphus

Loading...
Up