On Diagonal Stability of Positive Systems with Switches and Delays

 
PIIS000523100002839-6-1
DOI10.31857/S000523100002839-6
Publication type Article
Status Published
Authors
Affiliation:
Saint Petersburg State University
ITMO University
Address: Saint Petersburg, Russian Federation
Affiliation: Maynooth University
Address: Ireland, Maynooth
Journal nameAvtomatika i Telemekhanika
EditionIssue 12
Pages16-33
Abstract

    

Keywords
Received03.12.2018
Publication date11.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1233

Readers community rating: votes 0

1. Blanchini F., Colaneri P., Valcher M.E. Switched positive linear systems // Foundat. Trends Syst. Control. 2015. V. 2. No. 2. P. 101–273.

2. Rantzer A. Scalable control of positive systems // Eur. J. Control. 2015. V. 24. P. 72–80.

3. Zhang J., Huang J., Zhao X. Further results on stability and stabilisation of switched positive systems // IET Control Theory Appl. 2015. V. 9. No. 14. P. 2132–2139.

4. Valcher M.E., Zorzan I. On the consensus of homogeneous multiagent systems with positivity constraints // IEEE Trans. Autom. Control. 2017. V. 62. No. 10. P. 5096–5110.

5. Farina L., Rinaldi S. Positive linear systems: theory and applications. New York: Wiley, 2000.

6. Berman A., Plemmons R.J. Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM, 1994.

7. Kazkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston: Birkhauser, 1999.

8. Shorten R.N., Wirth F., Leith D. A positive systems model of TCP-like congestion control // IEEE Trans. Networking. 2006. V. 14. No. 3. P. 616–629.

9. Metod vektornykh funktsij Lyapunova v teorii ustojchivosti / Pod red. A.A. Vo- ronova i V.M. Matrosova. M.: Nauka, 1987.

10. Tkhaj V.N. Model', soderzhaschaya svyazannye podsistemy // AiT. 2013. № 6. S. 26–41.

11. Tkhai V.N. Model with Coupled Subsystems // Autom. Remote Control. 2013. V. 74. No. 6. P. 919–931.

12. Aleksandrov A.Yu., Chen Y., Platonov A.V., Zhang L. Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems // J. Difference Equat. Appl. 2012. V. 18. No. 9. P. 1545–1561.

13. Mason O. Diagonal Riccati stability and positive time-delay systems // Syst. Control Lett. 2012. V. 61. P. 6–10.

14. Aleksandrov A.Yu., Platonov A.V. On Aabsolute Stability of one Class of Nonlinear Switched Systems // Autom. Remote Control. 2008. V. 69. No. 7. P. 1101–1116.

15. Aleksandrov A., Mason O. Absolute stability and Lyapunov–Krasovskii functionals for switched nonlinear systems with time-delay // J. Franklin Institute. 2014. V. 351. P. 4381–4394.

16. Pastravanu O.C., Matcovschi M.-H. Max-type copositive Lyapunov functions for switching positive linear systems // Automatica. 2014. V. 50. P. 3323–3327.

17. Liberzon D. Switching in systems and control. Boston, MA: Birkhauser, 2003.

18. Shorten R., Wirth F., Mason O., Wulf K., King C. Stability criteria for switched and hybrid systems // SIAM Rev. 2007. V. 49. No. 4. P. 545–592.

19. Vassilyev S.N., Kosov A.A. Analysis of Hybrid Systems’ Dynamics using the Common Lyapunov Functions and Multiple Homomorphisms // Autom. Remote Control. 2011. V. 72. No. 6. P. 1163–1183.

20. Krasovskij N.N. O primenenii vtorogo metoda Lyapunova dlya uravnenij s za- pazdyvaniem vremeni // PMM. 1956. T. 20. № 3. C. 315–327.

21. Aleksandrov A., Mason O. Diagonal Riccati stability and applications // Linear Algebra Appl. 2016. V. 492. P. 38–51.

22. Aleksandrov A., Mason O. Diagonal Lyapunov–Krasovskii functionals for discretetime positive systems with delay // Syst. Control Lett. 2014. V. 63. P. 63–67.

23. Narendra K.S., Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices // IEEE Transact. Autom. Control. 1994. V. 39. No. 12. P. 2469–2471.

24. Liberzon D., Morse A.S., Hespanha J. Stability of switched systems: a Lie algebraic condition // Syst. Control Lett. 1999. V. 37. P. 117–122.

25. Ebihara Y., Peaucelle D., Arzelier D. LMI approach to linear positive system analysis and synthesis // Syst. Control Lett. 2014. V. 63. P. 50–56.

Система Orphus

Loading...
Up