всего просмотров: 1387
Оценка читателей: голосов 0
1. Blanchini F., Colaneri P., Valcher M.E. Switched positive linear systems // Foundat. Trends Syst. Control. 2015. V. 2. No. 2. P. 101–273.
2. Rantzer A. Scalable control of positive systems // Eur. J. Control. 2015. V. 24. P. 72–80.
3. Zhang J., Huang J., Zhao X. Further results on stability and stabilisation of switched positive systems // IET Control Theory Appl. 2015. V. 9. No. 14. P. 2132–2139.
4. Valcher M.E., Zorzan I. On the consensus of homogeneous multiagent systems with positivity constraints // IEEE Trans. Autom. Control. 2017. V. 62. No. 10. P. 5096–5110.
5. Farina L., Rinaldi S. Positive linear systems: theory and applications. New York: Wiley, 2000.
6. Berman A., Plemmons R.J. Nonnegative matrices in the mathematical sciences. Philadelphia: SIAM, 1994.
7. Kazkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston: Birkhauser, 1999.
8. Shorten R.N., Wirth F., Leith D. A positive systems model of TCP-like congestion control // IEEE Trans. Networking. 2006. V. 14. No. 3. P. 616–629.
9. Метод векторных функций Ляпунова в теории устойчивости / Под ред. А.А. Во- ронова и В.М. Матросова. М.: Наука, 1987.
10. Тхай В.Н. Модель, содержащая связанные подсистемы // АиТ. 2013. № 6. С. 26–41.
11. Tkhai V.N. Model with Coupled Subsystems // Autom. Remote Control. 2013. V. 74. No. 6. P. 919–931.
12. Aleksandrov A.Yu., Chen Y., Platonov A.V., Zhang L. Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems // J. Difference Equat. Appl. 2012. V. 18. No. 9. P. 1545–1561.
13. Mason O. Diagonal Riccati stability and positive time-delay systems // Syst. Control Lett. 2012. V. 61. P. 6–10.
14. Александров А.Ю., Платонов А.В. Об абсолютной устойчивости одного класса нелинейных систем с переключениями // АиТ. 2008. № 7. C. 3–18.
15. Aleksandrov A., Mason O. Absolute stability and Lyapunov–Krasovskii functionals for switched nonlinear systems with time-delay // J. Franklin Institute. 2014. V. 351. P. 4381–4394.
16. Pastravanu O.C., Matcovschi M.-H. Max-type copositive Lyapunov functions for switching positive linear systems // Automatica. 2014. V. 50. P. 3323–3327.
17. Liberzon D. Switching in systems and control. Boston, MA: Birkhauser, 2003.
18. Shorten R., Wirth F., Mason O., Wulf K., King C. Stability criteria for switched and hybrid systems // SIAM Rev. 2007. V. 49. No. 4. P. 545–592.
19. Васильев С.Н., Косов А.А. Анализ динамики гибридных систем с помощью об- щих функций Ляпунова и множественных гомоморфизмов // АиТ. 2011. № 6. С. 27–47.
20. Красовский Н.Н. О применении второго метода Ляпунова для уравнений с за- паздыванием времени // ПММ. 1956. Т. 20. № 3. C. 315–327.
21. Aleksandrov A., Mason O. Diagonal Riccati stability and applications // Linear Algebra Appl. 2016. V. 492. P. 38–51.
22. Aleksandrov A., Mason O. Diagonal Lyapunov–Krasovskii functionals for discretetime positive systems with delay // Syst. Control Lett. 2014. V. 63. P. 63–67.
23. Narendra K.S., Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices // IEEE Transact. Autom. Control. 1994. V. 39. No. 12. P. 2469–2471.
24. Liberzon D., Morse A.S., Hespanha J. Stability of switched systems: a Lie algebraic condition // Syst. Control Lett. 1999. V. 37. P. 117–122.
25. Ebihara Y., Peaucelle D., Arzelier D. LMI approach to linear positive system analysis and synthesis // Syst. Control Lett. 2014. V. 63. P. 50–56.