Synthesis of a Multi-Connected Digital Controller for a Robotized Vibration Isolation Platform Based on H∞- Optimization

 
PIIS000523100000269-9-1
DOI10.31857/S000523100000269-9
Publication type Article
Status Published
Authors
Affiliation: Stary Oskol Technological Institute (Branch) of the National University of Science and Technology MISiS
Address: Stary Oskol, Russia
Affiliation: V.G. Shukhov Belgorod State Technological University
Address:  Belgorod, Russia
Affiliation: V.G. Shukhov Belgorod State Technological University
Address: Belgorod, Russia
Journal nameAvtomatika i Telemekhanika
EditionIssue 7
Pages99-116
Abstract

We consider the problem of constructing multi-connected control of a robotic platform designed to protect technological objects and human operators from low-frequency influences on part of the moving base. The platform includes six drive mechanisms with stepper motors. The problem is solved by the methods of the modern theory of robust stabilization and optimal control based on H-optimization in the state space. We construct a mathematical model of the multidimensional system, taking into account the characteristics of electromechanical drives and using signals of feedback sensors as state variables. We give an example of synthesizing a multidimensional optimal stabilizing controller in the form of state feedback for a system with disturbances bounded in L2-norm. We define the feedback control structure and obtain the matrix of feedback coefficients. We also show the results of mathematical modeling. 

 

KeywordsRobotic platform, multi-connected controller, stabilization, robust control, Riccati equation, optimization
Received29.09.2018
Publication date29.09.2018
Number of characters955
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1635

Readers community rating: votes 0

1. Meilakhs A.M. Stabilization of Linear Controlled Systems under Uncertainty Conditions // Autom. Remote Control. 1975. V. 36. No. 2. P. 349–351.

2. Boyd S.L., el Chaoui L., Feron E., Balakrishnan V. Linear matrix inequalities in systems and control theory. Philadelphia: SIAM, 1994.

3. Rybak L.A., Chichvarin A.V., Shatokhin Yu.A. Sintez optimal'nogo tsifrovogo regulyatora prostranstvennoj sistemy vibroizolyatsii parallel'noj strukturoj s ehlektromekhanicheskim privodom // Problemy mashinostroeniya i nadezhnosti mashin. 2006. № 3. S. 81—86.

4. Polyak B.T. Extended Superstability in Control Theory // Autom. Remote Control. 2004. V. 65. No. 4. P. 567–576.

5. Polyak B.T., Shcherbakov P.S. Superstable Linear Control Systems. I. Analysis // Autom. Remote Control. 2002. V. 63. No. 8. P. 1239–1254.

6. Polyak B.T., Shcherbakov P.S. Superstable Linear Control Systems. II. Design // Autom. Remote Control. 2002. V. 63. No. 11. P. 1745–1763.

7. Pogonin A.A., Rybak L.A., Chichvarin A.V., Shatokhin Yu.A. Mekhatronnye tekhnologicheskie sistemy s upravleniem na osnove sverkhustojchivosti // Teoriya i sistemy upravleniya. 2008. № 4. S. 146–158.

8. Francis B.A. A course in H∞ control theory. Berlin: Springer-Verlag, 1987.

9. McFarlane D.C., Glover K. Robust controller design using normalized coprime factor plant description. N.Y.: Springer-Verlag, 1990.

10. Zames G. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses // IEEE Trans. Autom. Control. 1981. V. 26. P. 301–320.

11. Khorn R., Dzhonos Ch. Matrichnyj analiz. M.: Mir, 1989.

12. Doyle J.C., Glover R, Khargonekar P.P., Francis B.A. State-space Solutions to Standart H2 and H∞ Control Problems // IEEE Trans. Autom. Control. 1989. V. 34. No. 8. P. 831–847.

13. Petersen I.R., Hollot C.V. A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems // Automatica. 1986. V. 22. No. 4. P. 397–411.

14. Kenio T. Shagovye dvigateli i ikh mikroprotsessornye sistemy upravleniya / Per. s angl. M.: Ehnergoatomizdat, 1987.

15. Rybak L.A., Cherkashin N.N., Gun'kin A.A., Chichvarin A.V. Modelirovanie ehlektromekhanicheskogo privoda s gibridnym shagovym dvigatelem robotizirovannoj platformy [Ehlektronnyj resurs] // Sovremennye problemy nauki i obrazovaniya. 2014. № 6. http://www.science-education.ru/120-17012

16. Magergut V.Z., Ignatenko V.A., Bazhanov A.G., Shaptala V.G. Podkhody k postroeniyu diskretnykh modelej nepreryvnykh tekhnologicheskikh protsessov dlya sinteza upravlyayuschikh avtomatov // Vestn. Belgorodskogo gos. tekhnologich. un-ta im. V.G. Shukhova. 2013. № 2. S. 100–102.

17. Polyak B.T., Scherbakov P.S. Robastnaya ustojchivost' i upravlenie. M.: Nauka, 2002.

18. Ji P., Wu H. A Closed-Form Forward Kinematics Solution for the 6–6p Stewart Platform // IEEE Trans. Robot Automat. 2001. V. 17. No. 4. P. 522–526.

19. Merlet J.–P. Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis // Int. J. Robot Res. 2004. V. 23. No. 3. P. 221–235.

20. Parikh P.J., Lam S.S.Y. A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators // IEEE Trans. Robot. 2005. V. 21. No. 1. P. 18–25.

21. Mita Ts., Khara S., Kondo R. Vvedenie v tsifrovoe upravlenie / Per. s yaponsk. M.: Mir, 1994.

22. Mahmoud N.A., Khalil H.K. Robust Sontrol for a Nonlinear Servomechanism Problem // Int. J. Control. 1997. V. 66. No. 6. P. 779–802.

23. Khalil H.K. Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models // IEEE Trans. Autom. Control. 1996. V. 41. No. 2. P. 177–188.

24. Kuznetsov D.F. Stokhasticheskie differentsial'nye uravneniya. Teoriya i praktika chislennogo resheniya. 4-e izd., ispr. i dop. SPb.: Izd-vo Politekh. un-ta, 2010.

Система Orphus

Loading...
Up