About energy efficion of the electrothermal thruster with additive heat for the small spacecraft

 
PIIS000233100003220-6-1
DOI10.31857/S000233100003220-6
Publication type Article
Status Published
Authors
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Affiliation: S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)
Address: Russian Federation, Korolyov
Affiliation: Joint Company “Research and Production Company “Space Monitoring Systems, Information & Control and Electromechanical Complexes” named A.G. Iosifian
Address: Russian Federation, Moscow
Affiliation: Joint Company “Research and Production Company “Space Monitoring Systems, Information & Control and Electromechanical Complexes” named A.G. Iosifian
Address: Russian Federation, Moscow
Affiliation: Moscow state technical university named N.E. Baumanа
Address: Russian Federation, Moscow
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 5
Pages92-100
Abstract

The article is devoted to increasing the efficiency of an electric propulsion engine in conditions of limited electric power of a small spacecraft. The electrostatic engine used to produce thrust of the order of 100 mN requires an electric power of 1.5–2 kW and use xenon (cost $26,000 / Kg) as a working fluid, whose reserves on board of the spacecraft with a 5 year active life reach 200–240 kg. Therefore, the question of improving the working process of low-power electric propulsion engine, for example, electro-thermal ones, becomes topical.

The thermodynamic study of the working process of an electro-thermal rocket engine with additional electrical equipment (up to 500 W) of a small space vehicle weighing up to 500 kg was carried out in the work. As a result of the study, the values of the required rates of the expiration of the working fluid from the electric propulsion engine, the thrust of the engine were determined, and the engine geometry estimates were made. A comparison is made with electric propulsion engines of electrostatic type and plasma ones.

Keywordselectro-thermal engine, electric heating motor, additional energy supply, thermal chamber, exhaust velocity, temperature, working medium, high-frequency heating
Publication date10.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 2070

Readers community rating: votes 0

1. Makridenko L.A., Volkov S.N., Khodnenko V.P., Zolotoj S.A. Kontseptual'nye voprosy sozdaniya i primeneniya malykh kosmicheskikh apparatov // Voprosy ehlektromekhaniki. 2010. T. 114. S. 15–26.

2. Grodzovskij G.L., Ivanov Yu.N., Tokarev V.V. Mekhanika kosmicheskogo poleta: Proble‑ my optimizatsii. M.: Nauka, 1975. 702 s.

3. Gusev Yu.G., Pil'nikov A.V. Rol' i mesto ehlektroraketnykh dvigatelej v Rossij‑ skoj kosmicheskoj programme // Ehlektronnyj zhurnal «Trudy MAI». Vyp. № 60. www.mai.ru/science/trudy/.

4. Grishin S.D., Leskov L.V., Kozlov N.P. Ehlektricheskie raketnye dvigateli. M.: Mashinostroenie, 1975. 272s.

5. Yarygin V.I., Ruzhnikov V.A., Sinyavskij V.V. Kosmicheskie yadernye ehnergeticheskie ustanovki: proshloe, nastoyaschee, buduschee. Ch. I / Kosmicheskie yadernye ehnergetiche‑ skie ustanovki pervogo pokoleniya. Obninsk: Izd. IATEh NIYaU MIFI, 2012. 50 s.

6. Garrigues L. Study of a Hall effect thruster working with ambient atmospheric gas as propellant for low earth orbit missions // The 32nd International Electric Propulsion Conf. IEPC‑2011-142. Wiesbaden, Germany. September 11–15, 2011.

7. Diamant K.D. A 2-Stage Cylindrical Hall Thruster for Air Breathing Electrical Propulsion // 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit. AIAA Paper 2010–6522. 2010.

8. Patent, WO 03/098041 A2. 2003. Hruby V., Pote B., Brogan T., Hohman K., Szabo J., Rostler P. Air Breathing Electrically Powered Hall Effect Thruster.

9. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelej. M.: Mashino‑ stroenie, 1989. 465 s.

10. Vasil'ev A.P. i dr. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelej / Pod red. V.M. Kudryavtseva. M.: Vysshaya shkola, 1983. 703 s.

11. Makridenko L.A., Gecha V.Ya., Sidnyaev N.I., Onufriev V.V., Govor S.A. Opredelenie vy‑ sotnykh kharakteristik ehlektricheskikh raketnykh dvigatelej kosmicheskogo apparata metodami planirovaniya ehksperimenta // Problemy upravleniya. 2017. № 1. S. 75–85.

Система Orphus

Loading...
Up