Sparse Feedback Design in Discrete-Time Linear Systems

 
PIIS000523100000264-4-1
DOI10.31857/S000523100000264-4
Publication type Article
Status Published
Authors
Affiliation: Uchi.ru
Address: Moscow
Affiliation: Institute of Control Sciences. V.A. Trapeznikova RAS
Address: Moscow
Journal nameAvtomatika i Telemekhanika
EditionIssue 7
Pages3-21
Abstract

The subject of this paper is the analysis of sparse state feedback design procedures for linear discrete-time systems. By sparsity we mean the presence of zero rows in the gain matrix; this requirement is natural in the engineering practice when designing “economy” control systems which make use of a small amount of control inputs. Apart from the design of stabilizing sparse controllers, the linear-quadratic regulation problem is considered in the sparse formulation. Also, we consider a regularization scheme typical to the ℓ1-optimization theory. The efficiency of the approach is illustrated via numerical examples.

KeywordsLinear discrete-time systems, sparse feedback, convex approximation, linear-quadratic regulation, regularization
Received28.09.2018
Publication date29.09.2018
Number of characters658
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1731

Readers community rating: votes 0

1. Bruckstein A., Donoho D., Elad M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images // SIAM Review. 2009. V. 51. No. 1. P. 34–81.

2. Barabanov A.E., Granichin O.N. Optimal'nyj regulyator dlya linejnykh ob'ektov s ogranichennoj pomekhoj // AiT. 1984. № 5. S. 39–46.

3. Fazel M., Hindi H., Boyd S.P. A Rank Minimization Heuristic with Application to Minimum Order System Approximation // Proc. Amer. Control Conf. (ACC). 2001. P. 4734–4739.

4. Lin F., Fardad M., Jovanovi´c M.R. Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers // IEEE Trans. Automat. Control. 2013. V. 58. No. 9. P. 2426–2431.

5. Dhingra N.K., Jovanovi´c M.R. A Method of Multipliers Algorithm for Sparsitypromoting Optimal Control // Proc. Amer. Control Conf. (ACC). 2016. P. 1942– 1947.

6. Dhingra N.K., Wu X., Jovanovi´c M.R. Sparsity-promoting Optimal Control of Systems with Invariances and Symmetries // IFAC-PapersOnLine. 2016. V. 49. No. 18. P. 636–641.

7. Arastoo R., GhaedSharaf Y., Kothare M.V., Motee N. Optimal State Feedback Controllers with Strict Row Sparsity Constraints // Proc. Amer. Control Conf. (ACC). 2016. P. 1948–1953.

8. Caponigro M., Fornasier M., Piccoli B., Tr´elat E. Sparse Stabilization and Control of Alignment Models // Math. Models Meth. Appl. Sci. 2015. V. 25. No. 3. P. 521–564.

9. Paraev Yu.I., Smagina V.I. Zadachi uproscheniya struktury optimal'nykh regulyatorov // AiT. 1975. № 6. S. 180–183.

10. Wu X., Do¨rfler F., Jovanovi´c M.R. Input-output Analysis and Decentralized Optimal Control of Inter-area Oscillations in Power Systems // IEEE Trans. Power Syst. 2016. V. 31. No. 3. P. 2434–2444.

11. Polyak B., Khlebnikov M., Shcherbakov P. An LMI Approach to Structured Sparse Feedback Design in Linear Control Systems // Proc. Eur. Control Conf. (ECC). 2013. P. 833–838.

12. Polyak B.T., Khlebnikov M.V., Scherbakov P.S. Razrezhennaya obratnaya svyaz' v linejnykh sistemakh upravleniya // AiT. 2014. № 12. S. 13–27.

13. Bykov A.V., Scherbakov P.S. Approksimatsii matrichnoj l0-kvazinormy pri sinteze razrezhennykh regulyatorov: chislennye issledovaniya ehffektivnosti // Upravlenie bol'shimi sistemami. 2017. № 68. S. 47–73.

14. Leibfritz F. COMPleib: Constraint Matrix-Optimization Problem Library — A Collection of Test Examples for Nonlinear Semidefinite Programs, Control System Design and Related Problems // Technical Report. University of Trier, Department of Mathematics. Trier, Germany: 2004.

15. Bykov A.V. Sintez razrezhennykh regulyatorov dlya linejnykh sistem upravleniya s diskretnym vremenem // Tr. XII Vseross. sovesch. po probl. upravleniya (VSPU2014). 2014. C. 833–841.

16. Bykov A.V., Scherbakov P.S. Sintez optimal'noj razrezhennoj obratnoj svyazi v linejnykh sistemakh diskretnogo vremeni // Mater. XXII mezhdunar. konf. po avtomaticheskomu upravleniyu Avtomatika-2015. 2015. S. 30–31.

17. Khlebnikov M.V. Upravlenie linejnymi sistemami pri vneshnikh vozmuscheniyakh: kombinirovannaya obratnaya svyaz' // AiT. 2016. № 7. S. 20–32. Khlebnikov M.V. Control of linear Systems Subjected to Exogenous Disturbances: Combined Feedback // Autom. Remote Control. 2016. V. 77. No. 7. P. 1141–1151.

18. Polyak B.T., Khlebnikov M.V., Scherbakov P.S. Upravlenie linejnymi sistemami pri vneshnikh vozmuscheniyakh. Tekhnika linejnykh matrichnykh neravenstv. M.: LENAND, 2014.

19. Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. // URL http://cvxr. com/cvx. 2011.

20. Toh K.C., Todd M.J., Tu¨t¨uncu¨ R.H. SDPT3 – A MATLAB Software Package for Semidefinite Programming, version 1.3 // Optim. Meth. Software. 1999. V. 11. No. 1–4. P. 545–581

21. Kvakernaak Kh., Sivan R. Linejnye optimal'nye sistemy upravleniya. M.: Mir, 1977.

22. Pervozvanskij A.A. Kurs teorii avtomaticheskogo upravleniya. M.: Nauka, 1986.

23. Khlebnikov M.V., Scherbakov P.S., Chestnov V.N. Zadacha linejno-kvadratichnogo upravleniya. I. Novoe reshenie // AiT. 2015. № 12. S. 65–79.

24. Khlebnikov M.V., Shcherbakov P.S., Chestnov V.N. Linear-Quadratic Regulator. I. A New Solution // Autom. Remote Control. 2015. V. 76. No. 12. P. 2143–2155.

25. Levine W., Athans M. On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems // IEEE Trans. Automat. Control. 1970. V. 15. No. 1. P. 44–48.

26. Cand`es E.J., Romberg J.K., Tao T. Stable Signal Recovery from Incomplete and inaccurate Measurements // Commun. Pure Appl. Math. 2006. V. 59. No. 8. P. 1207–1223.

27. Deb K., Miettinen K. Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer Science & Business Media, 2008.

Система Orphus

Loading...
Up