Immersed boundaries method for numerical simulation of inviscid compressible flows

 
PIIS004446690002525-8-1
DOI10.31857/S004446690002525-8
Publication type Article
Status Published
Authors
Affiliation: IPM RAS
Address: Russian Federation
Affiliation: IPM RAS
Address: Russian Federation
Affiliation: IMP RAS
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 9
Pages1462-1471
Abstract

  

Keywords
AcknowledgmentThis work was supported by the Russian Science Foundation (Grant No. 16-11-10350).
Received19.12.2018
Publication date19.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 608

Readers community rating: votes 0

1. Peskin C.S. Flow patterns around heart valves: a numerical method // J. Comput. Phys. 1972. V. 10. № 2. P. 252–271.

2. Mittal R., Iaccarino G. Immersed boundary Methods // Annual. Rev. Fluid Mech. 2005. V. 37. P. 239–261.

3. Angot Ph., Bruneau C.-H., Fabrie P. A penalization method to take into account obstacles in incompressible viscous flows // Numer. Math. 1999. V. 81 P. 497–520.

4. Brown-Dymkoski E., Kasimov N., Vasilyev O.V. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows // J. Comput. Phys. 2014. V. 262. P. 344–357.

5. Jiang Y, Wang X, Jing X, Sun X. A Study of three-dimensional acoustic scattering by arbitrary distribution multibodies using extended immersed boundary method // ASME. J. Vib. Acoust. 2014. 136(3). P. 034505-034505-7.

6. Fedkiw R. Coupling an eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method // J. Comput. Phys. 2002. V. 175. P. 200–224.

7. Clarke D.K., Hassan H.A., Salas M.D. Euler calculations for multielement airfoils using Cartesian grids // AIAA Journal. 1986. V. 24. №. 3. P. 353–358.

8. Arquis E., Caltagirone J.P. Sur les conditions hydrodynamique au voisinage d’une interface millieux uide–millieu poreux: application a la convection naturelle // C.R. Acad. Sci. Paris II 1984. 299. P. 1–4.

9. Feireisl E., Neustupa J., Stebel J. Convergence of a Brinkman-type penalization for compressible fluid flows // Journal of Differential Equations. 2011. V. 250. Issue 1. P. 596–606.

10. Liu Q., Vasilyev O.V. Brinkman Penalization method for compressible flows in complex geometries // J. Comput. Phys. 2007. V. 227. P. 946–966.

11. Bergmann M., Iollo A. Modeling and simulation of fish-like swimming // J. Comput. Phys. 2011. V. 230. № 2. P. 329–348.

12. Boiron O., Chiavassa G., Donat R. A high-resolution penalization method for large Mach number flows in the presence of obstacles // Computers and Fluids. 2009. V. 38. № 3. P. 703–714.

13. Bae Y., Moon Y.J. Brinkman Penalization method for computation of acoustic scattering from complex geometry // Dec 6 16th AIAA/CEAS Aeroacoustics Conference (31st AIAA Aeroacoustics Conference). 2010-3939.

14. Kasimov N., Brown-Dymkoski E., Vasilyev O.V. Characteristic-based volume penalization method for arbitrary mach flows around moving and deforming complex geometry obstacles // Bulletin of the American Physical Society. 2015. V. 60(21). P. 574–575.

15. Nield D.A., Bejan A. Convection in porous media // Fifth Edition, Springer Internat. Publishing. 2017.

16. Bakhvalov Pavel, Abalakin Ilya, Kozubskaya Tatiana. Edge-based reconstruction schemes for unstructured tetrahedral meshes // Internat. Journal for Numerical Methods in Fluids. 2016. V. 81(6). P. 331–356.

17. Abalakin I.V., Bakhvalov P.A., Gorobets A.V., Duben' A.P., Kozubskaya T.K. Parallel'nyj programmnyj kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aehrodinamiki i aehroakustiki // Vychisl. metody i programmirovanie. 2012. T. 13. S. 110–125.

18. Tam C.K. W., Hardin J.C. (Eds.) Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA Conference Publication 3352. 1997.

Система Orphus

Loading...
Up