PIIS004446690003588-7-1
DOI10.31857/S004446690003588-7
Publication type Article
Status Published
Authors
Affiliation: Ural Federal University
Address: Russian Federation, Yekaterinburg
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1694-1700
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 867

Readers community rating: votes 0

1. 64th IUVSTA workshop on practical applications and methods of gas dynamics for vacuum science and technology (Germany, May 16–19, 2011). URL http:// www.itep.kit.edu/VGD‑2011 (Poslednij dostup 17.01.2018).

2. Sharipov F. Benchmark problems in rarefied gas dynamics // Vacuum. 2012. Vol. 86. P. 1697–1700.

3. Sazhin O. Rarefied gas flow through a slit and channel of finite length due to a large pressure difference. A benchmark problem // Vacuum 2015. Vol. 115. P. 75–79.

4. Shams M., Khadem M.H., Hossainpour S. Direct simulation of roughness effects on rarefied and compressible flow at slip flow regime // Int. J. Heat Mass Tran. 2008. Vol. 36. P. 88–95.

5. Sun H., Faghri M. Effect of surface roughness on nitrogen flow in a microchannel using the direct simulation Monte-Carlo method // Numer. Heat Tr. A-Appl. 2003. Vol. 43. P. 1–8.

6. Duan Z., Muzychka Y.S. Effects of corrugated roughness on developed laminar flow in microtubes // J. Fliud. Engng – T. ASME2008. Vol. 130. Article ID031102.

7. Yan Ji, Kun Yuan, Chung J.N. Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel // Int. J. Heat Mass Tran. 2006. Vol. 49. P. 1329–1339.

8. Lilly T.C., Duncan J.A., Nothnagel S.L., Gimelshein S.F., Gimelshein N.E., Ketsdever A.D., Wysong I.J. Numerical and experimental investigation of microchannel flows with rough surfaces // Phys. Fluids 2007. Vol. 19. Article ID106101.

9. Ngalande C., Lilly T., Killingsworth M., Gimelshein S., Ketsdever A. Nozzle plume impingement on spacecraft surfaces: effects of surface roughness // J. Spac. Rock. 2006. Vol. 43. P. 1013–1018.

10. Liu C.F, Ni Y.S. The fractal roughness effect of micro Poiseuille flows using the lattice Boltzmann method // Int. J. Engng Sci. 2009. Vol. 47. P. 660–668.

11. Sugiyama W., Sawada T., Yabuki M., Chiba Y. Effects of surface roughness on gas flow conductance in channels estimated by conical roughness model // Appl. Surf. Sci. 2001. Vol. 169–170. P. 787–791.

12. Rovenskaya O. Kinetic analysis of surface roughness in a microchannel // Comp. Fluids 2013. Vol. 77. P. 159–165.

13. Ukhov A.I., Porodnov B.T., Borisov S.F. Chislennoe modelirovanie gazodinamicheskoj provodimosti mikrokanalov s uchetom struktury ikh poverkhnosti // Prikl. mekhan. i tekhn.fiz.2009. Tom 50 № 5. S. 20–27.

14. Rovenskaya O.I. Numerical analysis of surface roughness effects on the Poiseuille flow caused by a small pressure drop // Int. J. Heat Mass Tran. 2017. Vol. 110. P. 817–826.

15. Sharipov F., Seleznev V. Data on internal rarefied gas flows // J. Phys. Chem. Ref. Data 1998. Vol. 27. P. 657–706.

16. Bird G.A. Molecular gas dynamics and the direct simulation of gas flow, Oxford: Oxford University Press, 1994.

17. Sazhin O. Gas flow through a slit into a vacuum in a wide range of rarefaction //Zh. ehksperim.i teor.fiz. 2008. Tom 134 № 1(7). S. 196–204.

18. (a) Sazhin O. Rarefied gas flow through a channel of finite length into a vacuum // Zh.ehksperim.i teor.fiz. 2009. T. 136 .№ 4(10). S. 811–817. (b) Sazhin O. Popravka k “Rarefied Gas Flow through a Channel of Finite Length into a Vacuum” [ZhEhT F 2009. Tom 136 № 4(10). S. 811–817] // ZhEhT F 2010. Tom 138 № 6(12). S. 1193.

19. Maxwell J.C. The scientific papers of james Clerk Maxwell. New York: Dover, 1890.

20. Cercignani C., Lampis M. Kinetic model for gas-surface interaction // Transp. J. Theory Stat. Phys. 1971. Vol. 1. P. 101–114.

21. Sazhin O., Kulev A., Borisov S., Gimelshein S. Numerical analysis of gas–surface scattering effect on thermal transpiration in the free molecular regime // Vacuum 2008. Vol. 82. P. 20–29.

22. Lord R.G. Some extensions to the Cercignani-Lampis gas-surface scattering kernel // Phys. Fluids A 1991. Vol. 3. P. 706–710.

23. (a) Sazhin O.V, Borisov S.F, Sharipov F. Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces // J. Vac. Sci. Technol. A 2001. Vol. 19. P. 2499–2503. (b) Sazhin O.V., Borisov S.F., Sharipov F. Erratum: Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces // J. Vac. Sci. Technol. A 2002. Vol. 20. P. 957.

24. Sazhin O. Comment on «Data on internal rarefied gas flows» [J. Phys. Chem. Ref. Data 27, 657 (1998)] // J. Phys. Chem. Ref. Data 2015. Vol. 44. Article ID036101.

25. Yoshida H., Shiro M., Hirata M., Akimichi H. New method of Monte Carlo calculation using the distorted scattering angle distribution depending on the surface roughness // J. Vac. Soc. Jpn. 2011. Vol. 54. P. 298–306.

26. Barantsev R.G. Vzaimodejstvie razrezhennykh gazov s obtekaemymi poverkhnostyami.M.: Nauka, 1975.

27. (a) Berman A.S. Free molecule transmission probabilities // J. Appl. Phys. 1965. Vol. 36. P. 3356. (b) Berman A.S. Erratum: Free molecule transmission probabilities // J. Appl. Phys. 1966. Vol. 37. P. 2930.

28. Davis D.H., Levenson L..L, Milleron N. Effect of «rougher-than-rough» surface on molecular flow through short duct // J. Appl. Phys. 1964. Vol. 35. P. 529–532.

29. Sawada T., Horie B.Y., Sugiyama W. Surface roughness model with statistically located cones for scatter of gas molecules, in: Proc. 20th Intern. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, 1997.P. 618–623.

Система Orphus

Loading...
Up