PIIS004446690003587-6-1
DOI10.31857/S004446690003587-6
Publication type Article
Status Published
Authors
Affiliation: Tomsk State University
Address: Russian Federation, Tomsk
Affiliation: Tomsk State University
Address: Russian Federation, Tomsk
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1675-1693
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 880

Readers community rating: votes 0

1. Tozeren H. Boundary integral equation method for some stokes problems // International journal for numerical methods in fluids. 1984. V. 4. P. 159–170.

2. Van de Vorst G.A. L., Mattheij R.M. M., Kuiken H.K. A boundary element solution for two– dimensional viscous sintering // Journal of computational physics. 1992. 100. P. 50–63.

3. Pozrikidis C. The buoyancy–driven motion of a train of viscous drops within a cylindrical tube // J. Fluid Mech. 1992. V. 237. P. 627–648.

4. Wen-Qiang Lu. Boundary element analysis of three kinds of gas–liquid free surface problem // Engineering Analysis with Boundary Elements. 1997. V. 19. P. 269–277.

5. Primo A.R.M, Wrobel L.C., Power H. Boundary integral formulation for slow viscous flow in a deforming region containing a solid inclusion // Engineering Analysis with Boundary Elements. 2000. V.24. P. 53–63.

6. Primo A.R. M., Wrobel L.C. Low Reynolds number deformation of viscous drops in a bounded flow region under surface tension // Mathematical and Computer Modelling. 2000. V.31. P. 99–118.

7. Reznik S.N., Yarin A.L. Spreading of an axisymmetric viscous drop due to gravity and capillarity on a dry horizontal wall // International Journal of Multiphase Flow. 2002. V.28. P. 1437–1457.

8. Reznik S.N., Zussman E. Yarin A.L. Motion of an inclined plate supported by a sessile two–dimensional drop // Phys. Fluids. 2002. V.14. № 1. P. 107–117.

9. Reznik S.N., Yarin A.L., Theron A., Zussman E. Transient and steady shapes of droplets attached to a surface in a strong electric field // J. Fluid Mech. 2004. V. 516. P. 349–377.

10. Zhu G., Mammoli A.A., Power H. A 3–D indirect boundary element method for bounded creeping flow of drops // Engineering Analysis with Boundary Elements. 2006. V. 30. P. 856–868.

11. Griggs A.J., Zinchenko A.Z., Davis R.H. Low–Reynolds–number motion of a deformable drop between two parallel plane walls // International Journal of Multiphase Flow. 2007. V. 33. P. 182–206.

12. Giraldo M., Power H., Florez W.F. Numerical simulation of the motion and deformation of a non–Newtonian shear– thinning drop suspended in a Newtonian circular Couette flow using DR–BEM // Engineering Analysis with Boundary Elements. 2009. V. 33(1). P. 93–104.

13. Wrobel Luiz C., Soares Jr. Delfim, Das Bhaumik Claire L. Drop deformation in Stokes flow through converging channels // Engineering Analysis with Boundary Elements. 2009. V. 33. P. 993–1000.

14. Pozrikidis C. Passage of a liquid drop through a bifurcation // Engineering Analysis with Boundary Elements. 2012. V. 36. P. 93–103.

15. Abramova O.A., Itkulova Yu.A.,. Gumerov N.A., Akhatov I.Sh. Trekhmernoe modelirovanie dinamiki deformiruemykh kapel' ehmul'sii metodom granichnykh ehlementov i bystrym metodom mul'tipolej na geterogennykh vychislitel'nykh sistemakh // Vychislitel'nye metody i programmirovanie. 2013. T. 14. S. 438–450.

16. Abramova O.A., Akhatov I.Sh., Gumerov N.A., Itkulova Yu.A. Trekhmernoe chislennoe issledovanie dinamiki szhimaemykh puzyr'kov v stoksovom techenii metodom granichnykh ehlementov // Zh. vychisl. matem. i matem. fiz. 2014. T. 54. № 9. S. 1537–1544.

17. Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti. M.: Nauka. 1970.

18. Brebbiya K., Telles Zh., Vroubel L. Metody granichnykh ehlementov. M.: Mir, 1987.

19. Yakutenok V.A. Chislennoe modelirovanie medlennykh techenij vyazkoj zhidkosti so svobodnoj poverkhnost'yu metodom granichnykh ehlementov // Matematicheskoe modelirovanie. 1992. T. 4. № 10. S. 62–70.

20. Yakutenok V.A. Chislennoe reshenie trekhmernykh zadach o polzuschem techenii vyazkoj zhidkosti so svobodnoj poverkhnost'yu metodom granichnykh ehlementov // Matematicheskoe modelirovanie. 1999. T. 11. № 10. S. 92–99.

21. Novoshintsev A.V., Shrager G.R., Yakutenok V.A. Milekhin Yu.M., Banzula Yu.B. Chislennoe modelirovanie istecheniya vyazkoj zhidkosti iz ob'emnogo smesitelya // Teoreticheskie osnovy khimicheskoj tekhnologii. 2006. T. 40, № 6. S. 668–674.

22. Novoshintsev A.V., Shrager G.R., Yakutenok V.A., Milekhin Yu.M., Banzula Yu.B., Karyazov S.V. Modelirovanie protsessa istecheniya vyazkoj zhidkosti pod dejstviem perepada davleniya s zapolneniem kanala // Teoreticheskie osnovy khimicheskoj tekhnologii. 2009. T. 43. № 3. S. 341–349.

23. Shrager G.R., Shtokolova M.N., Yakutenok V.A. Formirovanie svobodnoj poverkhnosti ob'ema vyazkoj zhidkosti vnutri vraschayuschegosya gorizontal'nogo tsilindra // Izv. RAN. MZhG. 2009. № 2. S. 179–185.

24. Ponomareva M.A., Shrager G.R., Yakutenok V.A. Ustojchivost' ploskoj strui vysokovyazkoj zhidkosti, natekayuschej na gorizontal'nuyu tverduyu ploskost' // Izv. RAN. Mekhanika zhidkosti i gaza. 2011. № 1. S. 53–61.

25. Ponomareva M.A., Filina M.P., Yakutenok V.A. The indirect boundary element method for the two–dimensional pressure– and gravity–driven free surface Stokes flow // WIT Transactions on Modelling and Simulation. 2014. V. 57. P. 289–304.

26. Ponomareva M.A., Yakutenok V.A. Simulation of mold filling by a highly viscous fluid using the 2D indirect boundary element method // WIT Transactions on Modelling and Simulation. 2015. V. 61. P. 285–296.

27. Ponomareva M.A., Yakutenok V.A. The indirect boundary element method for the axisymmetric free surface Stokes flow // WIT Transactions on Modelling and Simulation. 2015. V. 61. P. 273–284.

28. Dussan V.E.B., Davis S.H. On the motion of a fluid–fluid interface along a solid surface // 1974. J. Fluid Mech. V. 65. P. 71–95.

29. Shikhmurzaev Y.D. Singularities at the moving contact line. Mathematical, physical and computational aspects // Physica D. 2006. V. 217. P. 121–133.

30. Pukhnachev V.V., Solonnikov V.A. K voprosu o dinamicheskom kraevom ugle // Prikl.matem. i mekhan. 1982. T. 46, № 6, S. 961–971.

31. Shikhmurzaev Y.D. Moving contact lines in liquid/liquid/solid systems // J. Fluid Mech. 1997. V. 334. P. 211–249.

32. Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow. London: Cambridge University Press. 1992.

33. Kermanidis Th. Eine integralgleichungsmethode zur losung des torsionsproblems des umdrehungskorpers // Acta Mechanica. 1973. V. 16. P. 175–181.

34. Becker A.A. The boundary element method in engineering. A complete course. New York: McGraw–Hill. 1992.

35. Gradshteyn I.S., Ryzhik I.M. Tables of integrals, series and products. New York: Academic Press. 1980.

36. Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables. New York: Dover Publications. 1972.

37. Brebbia C.A., Telles J.C.F., Wrobel L.C. Boundary element techniques. Theory and applications in engineering. Berlin: Sprinqer–Verlag. 1984.

38. Van de Vorst G.A. L. A BEM solution for the simulation of axisymmetric viscous sintering // WIT Transactions on Modelling and Simulation. 1993. V. 6. P. 123–130.

39. Tanner L.H. The spreading of silicone oil drops on horizontal surfaces // J. Phys. D: Appl. Phys. 1979. V. 12. P. 1473–1484.

40. Mistry A., Muralidhar K. Axisymmetric model of drop spreading on a horizontal surface // Physics of Fluids. 2015. V. 27.092103. 26 pages.

41. Khappel' D., Brenner G. Gidrodinamika pri malykh chislakh Rejnol'dsa. M.: Mir. 1976.

42. Nakaya C. Spread of fluid drops over a horizontal plane // J. Phys. Soc. Jpn. 1974. V. 37. P. 539–543.

43. Ponomareva M.A., Yakutenok V.A. Opredelenie koehffitsienta poverkhnostnogo natyazheniya i ugla smachivaniya s primeneniem chislennykh raschetov ravnovesnykh form kapli // Poverkhnost'. Rentgenovskie, sinkhrotronnye i nejtronnye issledovaniya. 2011. № 7. S. 100–103.

Система Orphus

Loading...
Up