PIIS004446690003585-4-1
DOI10.31857/S004446690003585-4
Publication type Article
Status Published
Authors
Affiliation: Penza State University
Address: Russian Federation, Penza
Affiliation: Penza State University
Address: Russian Federation, Penza
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 10
Pages1656-1665
Abstract

  

Keywords
Received11.01.2019
Publication date14.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 907

Readers community rating: votes 0

1. Eleonskii P.N., Oganes’yants L.G. and Silin V.P. Cylindrical nonlinear waveguides. Soviet Physics JETP, 35(1):44–47, 1972.

2. Landau L.D. and Livshits E.M. . Ehlektrodinamika sploshnykh sred, volume VIII of Teoreticheskaya fizika. Moskva, Nauka, 1982.

3. Boardman A.D., Egan P., Lederer F., Langbein U., and Mihalache D. Third-Order Nonlinear Electromagnetic TE and TM Guided Waves. Elsevier sci. Publ. North-Holland, Amsterdam London New York Tokyo, 1991. Reprinted from Nonlinear Surface Electromagnetic Phenomena, Eds. H.-E. Ponath and G. I. Stegeman.

4. Vajnshtejn L.A. Ehlektromagnitnye volny. Moskva, Radio i svyaz', 1988.

5. Tikhonov A.N. and Samarskij A.A. O predstavleniya polya v volnovode v vide summy polej TE i TM. Zhurnal tekhnicheskoj fiziki, XVIII(7):959–970, 1948.

6. Smirnov Yu.G. and Valovik D.V. On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for maxwell’s equations with cubic nonlinearity. Journal of Mathematical Physics, 57(10):103504 (15 pages), 2016.

7. Valovik D.V. Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem. Nonlinear Analysis: Real World Applications, 20(12):52–58, 2014. DOI: 10.1016/j.nonrwa.2014.04.007.

8. Smirnov Yu.G. and Valovik D.V. Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity. Physical Review A, 91(1):013840 (6 pages), January 2015.

9. Vajnberg M.M. Variatsionnye metody issledovaniya nelinejnykh operatorov. GITTL, Moskva, 1956.

10. Ambrosetti A. and Rabinowitz P.H. Dual variational methods in critical point theory and applications. Journal of Functional Analysis, 14(4):349–381, December 1973.

11. Krasnosel'skij M.A. Topologicheskie metody v teorii nelinejnykh integral'nykh uravnenij. GITTL, 1956.

12. Amrein W.O., Hinz A.M., and Pearson D.B. Sturm-Liouville Theory: Past and Present. Birkh¨auser Verlag, Basel/ Switzerland, 2005.

13. Osmolovskij V.G. Nelinejnaya zadacha Shturma – Liuvillya. Izd-vo S.-Peterburgskogo universiteta, 2003.

14. Kurseeva V.Yu. and Smirnov Yu.G. O suschestvovanii beskonechnogo mnozhestva sobstvennykh znachenij v nelinejnoj zadache tipa Shturma – Liuvillya, voznikayuschej v teorii volnovodov. Differentsial'nye uravneniya, 53(11):1453–1460, 2017.

15. Petrovskij I.G. Lektsii po teorii obyknovennykh differentsial'nykh uravnenij. Izd-vo Moskovskogo universiteta, 1984.

16. Valovik D.V. Novel propagation regimes for te waves guided by a waveguide filled with kerr medium. Journal of Nonlinear Optical Physics & Materials, 25(4):1650051 (17 pages), 2016.

Система Orphus

Loading...
Up