Sufficient condition for the convergence of Lagrange-Sturm-Liouville processes in terms of the one-sided modulus of continuity

 
PIIS004446690003532-6-1
DOI10.31857/S004446690003532-6
Publication type Article
Status Published
Authors
Affiliation:
Address: Russian Federation, Saratov
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 11
Pages1780-1793
Abstract

     

Keywords
Received15.01.2019
Publication date15.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1058

Readers community rating: votes 0

1. Natanson G. I. Ob odnom interpolyatsionnom protsesse. Uchyon. zapiski Leningrad. ped. in-ta. 1958. T. 166. S. 213–219.

2. Kramer H. P. A generalized sampling theorem / H. P. Kramer // J. Math. Phus. .– 1959. – Vol. 38. – P. 68–72.

3. Trynin A. Yu. O raskhodimosti interpolyatsionnykh protsessov Lagranzha po sobstvennym funktsiyam zadachi Shturma-Liuvillya, Izvestiya vyssh. uch-ykh zavedenij. Matematika., 11, 74–85 (2010)

4. Trynin A. Yu. Ob otsutstvii ustojchivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma-Liuvillya, Izvestiya vyssh. uch-ykh zavedenij. Matematika., 9(460), 60–73 (2000)

5. Trynin A. Yu. Printsip lokalizatsii dlya protsessov Lagranzha-Shturma-Liuvillya / A. Yu. T rynin // Matematika. Mekhanika. – S aratov: Izd-vo Sarat. un-ta, 2006. – T . 8. – S . 137–140.

6. Trynin A. Yu. O b odnom integral'nom priznake skhodimosti protsessov Lagranzha-Shturma-Liuvillya / A. Yu. T rynin // Matematika. Mekhanika. – S aratov: Izd-vo Sarat. un-ta, 2007. – T . 9. – S . 94–97.

7. Trynin A. Yu. Teorema otschyotov na otrezke i eyo obobscheniya/ A. Yu. T rynin // LAP LAMBERT Academic Publishing RU.– 2016.– 479c.

8. Trynin A. Yu. Differentsial'nye svojstva nulej sobstvennykh funktsij zadachi Shturma–Liuvillya, Ufimsk. matem. zhurn., 3:4 (2011), 133–143

9. Trynin A. Yu. Ob odnoj obratnoj uzlovoj zadache dlya operatora Shturma–Liuvillya, Ufimsk. matem. zhurn., 5:4 (2013), 116–129

10. Novikov I. Ya., S. B. Stechkin. Osnovy teorii vspleskov. Uspekhi matematicheskikh nauk. 1998, T. 53. vypusk 6(324)., S. 53–128.

11. Stenger F. Numerical Metods Based on Sinc and Analytic Functions, (N.Y., Springer Ser. Comput. Math., 20 Springer- Verlag, 1993)

12. Dobeshi I. Desyat' lektsij po vejvletam, (Izhevsk, “Regulyarnaya i khaoticheskaya dinamika”, 2001)

13. Shmukler A. I., Shul'man T. A. O nekotorykh svojstvakh ryadov Kotel'nikova / A. I. Shmukler, T. A . Shul'man // Izvestiya vuzov. Matematika.– 1974.– № 3. – S . 93–103.

14. Livne Oren E., Brandt Achi E. MuST: The multilevel sinc transform, SIAM J. on Scientific Computing, 33(4), 1726–1738 (2011)

15. Khosrow M., Yaser R., Hamed S. Numerical Solution for First Kind Fredholm Integral Equations by Using Sinc Collocation Method, International Journal of Applied Physics and Mathematics. 2016. Vol. 6, Num. 3, p.120–128

16. Coroianu L, Sorin G. Gal Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels, Demonstratio Mathematica, Vol. 49, No 1, (2016), p. 38–49.

17. Richardson M., Trefethen L. A sinc function analogue of Chebfun, SIAM J. SCI. COMPUT. 2011. Vol. 33, No. 5, p. 2519–2535

18. Marwa M. Tharwat Sinc approximation of eigenvalues of Sturm – Liouville problems with a Gaussian multiplier Calcolo: a quarterly on numerical analysis and theory of computation Vol. 51 Issue 3, September (2014) Pages 465–484

19. Alquran M. T., Al-Khaled K. Numerical Comparison of Methods for Solving Systems of Conservation Laws of Mixed Type, Int. Journal of Math. Analysis 5(1), 35–47 (2011)

20. Trynin A. Yu., Sklyarov V. P. Error of sinc approximation of analytic functions on an interval, Sampling Theory in Signal and Image Processing, 7 (3), 263–270 (2008)

21. Trynin A. Yu. Ob otsenke approksimatsii analiticheskikh funktsij interpolyatsionnym operatorom po sinkam, Matematika. Mekhanika., Izd-vo Sarat. un-ta, Saratov, 7, 124–127 (2005)

22. Trynin A. Yu. Otsenki funktsij Lebega i formula Nevai dlya sinc-priblizhenij nepreryvnykh funktsij na otrezke, Sibirskij matematicheskij zhurnal, 48(5), 1155–1166 (2007)

23. Trynin A. Yu. Kriterii potochechnoj i ravnomernoj skhodimosti sink-priblizhenij nepreryvnykh funktsij na otrezke, Matematicheskij sbornik, 198(10), 141–158 (2007)

24. Trynin A. Yu. Kriterij ravnomernoj skhodimosti sinc-priblizhenij na otrezke, Izvestiya vyssh. uch-ykh zavedenij. Matematika., 6, 66–78 (2008)

25. Sklyarov V. P. On the best uniform sinc-approximation on a finite interval, East Journal on Approximations, 14 (2), 183–192 (2008)

26. Trynin A. Yu. Neobkhodimye i dostatochnye usloviya ravnomernoj na otrezke sink-approksimatsii funktsij ogranichennoj variatsii, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298

27. Mohsen A., El-Gamel M. A Sinc-Collocation method for the linear Fredholm integro-differential equations. Z. angew. Matth. Phys., 2006, 1–11, DOI 10.1007/ s00033–006–5124–5.

28. Trynin A. Yu. O raskhodimosti sink-priblizhenij vsyudu na (0,?) , Algebra i analiz, 22 (4), 232–256 (2010)

29. Trynin A. Yu. Priblizhenie nepreryvnykh na otrezke funktsij s pomosch'yu linejnykh kombinatsij sinkov, Izvestiya vyssh. uch-ykh zavedenij. Matematika., № 3, 72–81, (2016)

30. Trynin A. Yu. O nekotorykh svojstvakh sink-approksimatsij nepreryvnykh na otrezke funktsij, Ufimskij matematicheskij zhurnal, 7, № 4 116–132, (2015)

31. Trynin A. Yu. O neobkhodimykh i dostatochnykh usloviyakh skhodimosti sink-approksimatsij, Algebra i analiz, 27:5 (2015), 170–194

32. Umakhanov A. Ya., Sharapudinov I. I. Interpolyatsiya funktsij summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoj skhodimosti, Vladikavk. matem. zhurn., 18:4 (2016), 61–70

33. Trynin A. Yu. Obobschenie teoremy otschyotov Uittekera-Kotel'nikova-Shennona dlya nepreryvnykh funktsij na otrezke, Matematicheskij sbornik, 200(11), 61–108 (2009)

34. Trynin A. Yu. Ob operatorakh interpolirovaniya po resheniyam zadachi Koshi i mnogochlenakh Lagranzha–Yakobi, Izvestiya Rossijskoj Akademii Nauk. Seriya matematicheskaya, 75(6), 129–162 (2011)

35. Privalov A. A. Teoriya interpolirovaniya funktsij, Kn.1, Kn.2, Saratov, Izd-vo Saratovskogo un-ta, 1990.

36. Golubov B. I. Ob absolyutnoj skhodimosti kratnykh ryadov Fur'e, Matem. zametki, 37:1, 13–24 (1985)

37. D'yachenko M. I. Ob odnom klasse metodov summirovaniya kratnykh ryadov Fur'e, Matematicheskij sbornik, 204:3, 3–18 (2013)

38. Skopina M. A., Maksimenko I. E. Mnogomernye periodicheskie vspleski, Algebra i analiz, 15:2, 1–39 (2003)

39. D'yachenko M. I. Ravnomernaya skhodimost' giperbolicheskikh chastichnykh summ kratnykh ryadov Fur'e, Matem. zametki, 76:5, 723–731 (2004)

40. Borisov D. I., Dmitriev S. V. On the spectral stability of kinks in 2D Klein-Gordon model with parity-time-symmetric perturbation, Studies in Applied Mathematics, 138:3 (2017), 317–342

41. D. Borisov, G. Cardone, T. Durante, “Homogenization and norm resolvent convergence for elliptic operators in a strip perforated along a curve”, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 146:6 (2016), 1115–1158

42. K. Mochizuki and I. Yu. Trooshin, Evolution equations of hyperbolic and Schrodinger type. Asymptotics, estimates and nonlinearities. Based on a workshop on asymptotic properties of solutions to hyperbolic equations, London, UK, March 2011, 2012 P. 227–245

43. Ivannikova T. A., Timashova E. V., Shabrov S. A. O neobkhodimom uslovii minimuma kvadratichnogo funktsionala s integralom Stilt'esa i nulevym koehffitsientom pri starshej proizvodnoj na chasti intervala, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2(1) (2013), 3–8

44. Yu. A. Farkov. O nailuchshem linejnom priblizhenii golomorfnykh funktsij, Fundament. i prikl. matem., 19:5 (2014), 185–212; J. Math. Sci., 218:5 (2016), 678–698

45. Levitan B. M., Sargsyan I. S. Operatory Shturma-Liuvillya i Diraka / B. M . Levitan, I. S . S argsyan. – M .: “Nauka”, Gl. red. fiz. – mat. lit., 1988.

Система Orphus

Loading...
Up