Factorial transformation of some classical combinatorial sequences

 
PIIS004446690003530-4-1
DOI10.31857/S004446690003530-4
Publication type Article
Status Published
Authors
Affiliation: IPM them. M.V. Keldysh RAS
Address: Russian Federation
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 11
Pages1747-1770
Abstract

  

Keywords
Received15.01.2019
Publication date15.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 963

Readers community rating: votes 0

1. Lando S. L. Lektsii o proizvodyaschikh funktsiyakh. M.: MTsNMO, 2004.

2. Arakawa T., Ibukiyama T., Kaneko M. Bernoulli Numbers and Zeta Functions. Springer, Japan, 2014.

3. Frame J. The Hankel power sum matrix inverse and the Bernoulli continued fraction // Math. Comp. 1979. V. 33 (146), P. 815–826.

4. Euler L. De seriebus divergentibus // Novi Comment. Acad. Sci. Petropolitanae 1754/55. V. 5, P. 205–237. = Opera omnia, Ser. I, V. 14. Teubner, Leipzig. 1925. P. 585–617.

5. Nielsen N. Die Gammafunktion. Teubner, Leipzig, Berlin, 1906. = Chelsea, New York, 1965.

6. Weniger E. J. Summation of divergent power series by means of factorial series // [arXiv:1005.0466v1], 2010. (http://arxiv.org/abs/1005.0466v1).

7. Knopp K. Theory and applications of infinite series. Blackie & Son, London, 1946.

8. Sloane online encyclopedia of integer sequences, (http://oeis.org).

9. Khrushchev S. Orthogonal Polynomials and Continued Fractions. Encycl. of Math. and its Aappl. 122, Cambridge Univ. Press, 2008.

10. Apery R. Irrationalite de z(2) et z(3) // Asterisque. 1979. V. 61. P. 11–13.

11. Finch S. R. Mathematical Constants. Encycl. of Math. and its Aappl. 94, Cambridge Univ. Press, 2003.

12. Candelpergher B. Ramanujan Summation of Divergent Series. Lecture Notes in Math., Springer. 2017.

13. Watson G. N. The transformation of an asymptotic series into a convergent series of inverse factorials // Rend. Circ. Mat. Palermo. 1912. V. 34. P. 41–88.

14. Petkovsek W., Wilf H. S., Zeilberger D. A=B. Taylor & Francis. 1996.

15. Bernstein M., Sloane N. J.A. Some Canonical Sequences of Integers // Lin. Algebra and its Appl. 1995. V. 226–228. P. 57–72.

16. Hardy G. H. Divergent Series. New York, Chelsea. 1949, 1992.

17. Glimm J., Jaffe A. Quantum physics (2nd ed.). Berlin, New York: Springer, 1987.

18. Bender C., Heissenberg C. Convergent and Divergent Series in Physics // [arXiv:1703.05164v2]. 2016. (https://arxiv.org/abs/1703.05164v2).

Система Orphus

Loading...
Up