Dynamics and Stability of Air Bubbles in a Porous Medium

 
PIIS004446690000315-7-1
DOI10.31857/S004446690000315-7
Publication type Article
Status Published
Authors
Affiliation:
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Journal nameZhurnal vychislitelnoi matematiki i matematicheskoi fiziki
EditionVolume 58 Issue 7
Pages1219-1234
Abstract

A numerical method is developed for reliably computing the evolution of the boundary of a multiply connected water-saturated domain with air bubbles in the case when the pressure inside them depends on the bubble volume. It is assumed that the distance between the gas bubbles is comparable with their size. Gas bubbles can be near an extended phase transition boundary separating a porous medium flow and a domain saturated with a mixture of air and water vapor. The numerical method is verified by comparing the numerical solution of a test problem with its analytical solution. Caused by finite-amplitude perturbations of the phase interface, the deformation of an air bubble in an extended horizontal water-saturated porous layer with a constant pressure gradient is studied. It is shown that the instability of the bubble boundary with respect to finite perturbations leads to the splitting of the bubble. An analysis of the numerical solution shows that, although all circular bubbles move at the same velocity irrespective of their size, nevertheless, due to instability, a portion of the bubble boundary where the air displaces the fluid moves faster than an opposite portion where the fluid displaces the air. As a result, nearby bubbles are capable of merging before splitting.

Keywordsporous media flow, Saffman–Taylor instability, bubble, moving free boundary, bubble splitting, Hele-Shaw cell
Received11.10.2018
Publication date11.10.2018
Number of characters1275
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1076

Readers community rating: votes 0

1. Shargatov V.A., Il’Ichev A.T., Tsypkin G.G. Dynamics and stability of moving fronts of water evaporation in a porous medium //Int. J. Heat and Mass Transfer. 2015. V. 83. S. 552–561.

2. Il'ichev A.T., Tsypkin G.G. Neustojchivosti odnorodnykh fil'tratsionnykh techenij s fazovym perekhodom // ZhEhTF. 2008. T. 134. S. 815–830.

3. Il’ichev A.T., Tsypkin G.G. Catastrophic transition to instability of evaporation front in a porous medium // Europ. J. Mech B Fluids. 2008. V. 27. № 6. P. 665–677.

4. Tsypkin G.G., Il’ichev A.T. Gravitational stability of the interface in water over steam geothermal reservoirs // Transp. Porous Media. 2004. V. 55. № 2. P. 183-199.

5. Il'ichev A.T., Shargatov V.A. Dinamika frontov ispareniya vody // Zh. vychisl. matem. i matem. fiz. 2013. T. 53. № 9. S. 1531–1553.

6. Gubin S.A., Krivosheev A.V., Shargatov V.A. O suschestvovanii statsionarnogo fronta ispareniya vody v gorizontal'no-protyazhennoj nizkopronitsaemoj oblasti // Izv. RAN. Mekhan. zhidkosti i gaza. 2015. № 2. S. 70–80.

7. Shargatov V.A. O neustojchivosti fronta fazovogo perekhod zhidkost'-par v neodnorodnykh poristykh smachivaemykh sredakh// Izv. RAN. Mekhan. zhidkosti i gaza. 2017. T. 52. № 1. S. 148–159.

8. Khan Z.H., Pritchard D. Liquid–vapour fronts in porous media: Multiplicity and stability of front positions // Intern. J. of Heat and Mass Transfer. 2013. V. 61. P. 1–17.

9. Fletcher K. Vychislitel'nye metody v dinamike zhidkostej. Tom 2. M. Mir, 1991. S.149–169.

10. Brebbia C.A., Telles J.C.F. and Wrobel W.C. Boundary element techniques: Theory and applications in engineering. Berlin: Springer-Verlag, 1984. P. 27–122.

11. Lifanov I.K. Metod singulyarnykh integral'nykh uravnenij i chislennyj ehksperiment. M.: TOO Yanus, 1995.

12. Gyunter I.M. , Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoj fiziki. M.: Gostekh-teorizdat, 1953.

13. Krutitskij P.A., Metod granichnykh integral'nykh uravnenij v smeshannoj zadache dlya uravneniya Laplasa s proizvol'nym razbieniem granitsy // Differents. ur-ya. 2001. T. 37. № 1. S. 73–82.

14. Krutitskij P.A., Smeshannaya zadacha dlya uravneniya Laplasa v trekh- mernoj mnogosvyaznoj oblasti//, Differents. ur-ya. 1999. T. 35. № 9. , S. 1179–1186.

15. Li S., Lowengrub J.S., Leo P. H. A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell. // J. Comput. Phys. 2007. V. 225. № 1. P. 554–567.

16. Cristini V., Lowengrub J. Three-dimensional crystal growth. II: nonlinear simulation and control of the Mullins–Sekerka instability // J. Cryst. Growth. 2004. V. 266. P. 552–567.

17. Caldwell J. Solutions of potential problems using the reduction to Fredholm integral equations // J. of Applied Physics. 1980. V. 119. P. 5583–5587.

18. Constanda C. On the solution of the Dirichlet problem for the two-dimensional laplace equation // Proc. of the american math. society. 1993. V. 119. I. 3. P. 877–884.

19. Nikol'skij D.N. Ehvolyutsiya granitsy razdela razlichnykh zhidkostej v neodnorodnykh sloyakh // Zh. vychisl. matem. i matem. fiz. 2010. T. 50. № 7. S. 1269–1275.

20. Nikol'skij D.N. Matematicheskoe modelirovanie protsessa ehvolyutsii granitsy razdela razlichnykh zhidkostej v kusochno-neodnorodnykh sloyakh slozhnoj geologicheskoj struktury // Zh. vychisl. matem. i matem. fiz. 2013. T. 53. № 6. S. 1041–1048.

21. Itkulova Yu.A., Abramova O.A., Gumerov N.A., Akhatov I.Sh. Modelirovanie dinamiki puzyr'kov v trekhmernykh potentsial'nykh techeniyakh na geterogennykh vychislitel'nykh sistemakh bystrym metodom mul'tipolej i metodom granichnykh ehlementov // Vychisl. metody i programmirovanie: novye vychisl. tekhnologii. 2014. T. 15. № 2. S. 239–257.

22. Dallaston M. C., McCue S.W. An accurate numerical scheme for the contraction of a bubble in a Hele–Shaw cell // ANZIAM Journal. 2013. V. 54. P. 309–326.

23. Dallaston M. C., McCue S.W. Buble extiction in Hele–Shaw flow with surface tension and kinetic undercooling regularisation // Nonlinearity. 2013. V. 26. P. 1639–1665.

24. Vasconcelos G.L. Multiple bubbles and fingers in a Hele–Shaw channel: Complete set of steady solutions// J. Fluid Mech. 2015, V. 780, P. 299–326.

25. Alimov M.M. Nestatsionarnoe dvizhenie puzyrya v lotke Khele–Shou // Izv. RAN. Mekhan. zhidkosti i gaza. 2016. T. 51. № 2. S. 129–141.

26. Alimov M.M. Tochnoe reshenie zadachi Masketa–Lejbenzona dlya rastuschego ehllipticheskogo puzyrya // Izv. RAN. Mekhan. zhidkosti i gaza. 2016. T. 51. № 5. S. 86–98.

27. McLean J.W., Saffman P.G. Stability of bubbles in a Hele–Shaw cell // Physics of Fluids. 1987. V. 30. № 9. P. 2624–2635.

28. Li X.,Yortsos Y.C. Bubble growth and stability in an effective porous medium // Phys. Fluids A. 1994. V. 6. I. 5 P. 1663–1676.

29. Spayd K., M. Shearer, Hu Z. Stability of plane waves in two phase porous media flow // Applicable Analysis. 2012. V. 91. I. 2, P. 293–308.

Система Orphus

Loading...
Up