How Did Quarks Appear in the Theory of Elementary Particles? (Towards the 60th Anniversary of the Great Discovery)

 
PIIS020596060032375-4-1
DOI10.31857/S0205960624020025
Publication type Article
Status Published
Authors
Affiliation: S. I. Vavilov Institute for the History of Science and Technology, Russian Academy of Sciences
Address: Moscow, Ul. Baltiyskaya, 14
Journal nameVoprosy istorii estestvoznaniia i tekhniki
EditionVolume 45 Issue 2
Pages250-277
AbstractThe article examines the history of the emergence of the concept of quarks and the quark model in the theory of elementary particles in 1963–1964. Quarks have a fractional electric charge and only exist inside strongly interacting particles (hadrons), thus being a completely new form of matter. The development of this model led to a modern theory of strong interactions, called quantum chromodynamics (QCD), which is included in the standard model that is the modern theory of elementary particles and fundamental interactions in the microcosm. It is shown that this discovery was made almost simultaneously and independently by the American theorists M. Gell-Mann and G. Zweig (the term “quark” was coined by Gell-Mann while Zweig used the word “ace” which, however, did not become common). There has been an earlier anticipation of the quark model in the work of Israeli scientists Y. Ne’eman and H. Goldberg. All of these physicists proceeded from the symmetry of the strong interaction, discovered by Gell-Mann and Ne’eman in 1961 and called the “eightfold way” by Gell-Mann. Their approaches differed in the understanding of the problem of the reality of quarks: Ne’eman and his co-author did not believe in the reality of fractionally charged particles; Zweig believed that they could exist in a free form while Gell-Mann was closest to the modern understanding, believing that they only exist inside hadrons. Some features of the process of the discovery of quarks (the phenomena of missed opportunities, simultaneous and independent discoveries, the invasion of metaphysics into physics, etc.) are noted. The article is accompanied by a brief dictionary of special terms used in the article.
Keywords elementary particles, quarks, strong interactions, symmetries, “eightfold path”, “eightfold way”, gauge fields, quantum chromodynamics, standard model, problem of the reality of quarks, historico-scientific phenomena, M. Gell-Mann, G. Zweig, Y. Ne’eman
Received27.03.2023
Publication date28.06.2024
Number of characters62810
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 0, views: 11

Readers community rating: votes 0

1. Barnes, V. E., Connolly, P. L., Crennell, D. J. et al. (1964) Observation of a Hyperon with Strangeness Minus Three, Physical Review Letters, vol. 12, no. 8, pp. 204–206.

2. Berestetskii, V. B. (1979) Problemy fiziki elementarnykh chastits [Problems in Particle Physics]. Moskva: Nauka.

3. Charitos, P. (2013) Interview with George Zweig (13th December 2013), https://ep-news.web.cern.ch/content/interview-george-zweig.

4. Chew, G. F., Gell-Mann, M., and H. Rosenfeld, A. H. (1964) Strongly Interacting Particles, Scientific American, vol. 210, no. 2, pp. 74–93.

5. Fritzsch, H. (1987) The Development of Quantum Chromodynamics, in: Doncel, M., Hermann, A., Michel, L., and Pais, A. (eds.) Symmetries in Physics (1600–1980). Proceedings of the 1st International Meeting on the History of Scientific Ideas. Sant Feliu de Guixols, Catalonia, Spain. September 20–26, 1983. Bellaterra, Barcelona: Universitat Autonoma de Barcelona, pp. 593–609.

6. Fritzsch, H. (ed.) (2018) Murray Gell-Mann and the Physics of Quarks. Basel, Boston and Berlin: Birkhäuser.

7. Fritzsch, H., and Gell-Mann, M. (eds.) (2015) 50 Years of Quarks. Singapore: World Scientific.Gell-Mann, M. (1962) Symmetries of Baryons and Mesons, Physical Review, vol. 125, pp. 1067–1084.

8. Gell-Mann, M. (1964) A Schematic Model of Baryons and Mesons, Physics Letters, vol. 8, no. 3, pp. 214–216.

9. Gell-Mann, M. (1987) Particle Theory from S-Matrix to Quarks, in: Doncel, M., Hermann, A., Michel, L., and Pais, A. (eds.) Symmetries in Physics (1600–1980). Proceedings of the 1st International Meeting on the History of Scientific Ideas. Sant Feliu de Guixols, Catalonia, Spain. September 20–26, 1983. Bellaterra, Barcelona: Universitat Autonoma de Barcelona, pp. 473–497.

10. Gell-Mann, M. (2010) Selected Papers. Singapore: World Scientific.

11. Gell-Mann, M., Rozenfelʼd, A., and Chu, Dzh. (Gell-Mann, M., Rosenfeld, A., and Chew, G.) (1964) Sil’no vzaimodeistvuiushchie chastitsy [Strongly Interacting Particles], Uspekhi fizicheskikh nauk, vol. 83, no. 4, pp. 695–727.

12. Gleshou, Sh. (Glashow, Sh.) (1980) Na puti k ob”edinennoi teorii – niti v gobelene. Nobelevskaia lektsiia [Towards a Unified Theory – Threads in a Tapestry. Nobel Lecture], Uspekhi fizicheskikh nauk, vol. 132, no. 2, pp. 219–228.

13. Goldberg, H., and Ne’eman, Y. (1963) Baryon Charge and R-Inversion in Octet Model, Il Nuovo Cimento, vol. 27, no. 1, pp. 1–2.

14. Gribbin, Dzh., and Gribbin, M. (Gribbin, J., and Gribbin, M.) (2002) Richard Feinman: zhizn’ v nauke [Richard Feynman: A Life in Science]. Izhevsk: Institut komp’iuternykh issledovanii.

15. Gross, D. (Gross, D.) (2005) Otkrytie asimptoticheskoi svobody i poiavlenie KKhD. Nobelevskaia lektsiia [The Discovery of Asymptotic Freedom and the Emergence of QCD. Nobel Lecture], Uspekhi fizicheskikh nauk, vol. 175, no. 12, pp. 1306–1318.

16. Han, M., and Nambu, Y. (1965) Three-Triplet Model with Double SU(3) Symmetry, Physical Review, vol. B 139, pp. 1006–1015.

17. Ikeda, M., Ogawa, Sh., and Ohnuki, Y. (1959) A Possible Symmetry in Sakata’s Model for Bosons-Baryons System, Progress of Theoretical Physics (Kyoto), vol. 22, no. 5, pp. 715–724.

18. Isaev, P. S. (2015) Obyknovennye, strannye, ocharovannye, prekrasnye…: ob istorii razvitiia teoreticheskikh idei v fizike elementarnykh chastits [Ordinary, Strange, Charmed, Beautiful...: On the History of the Development of Theoretical Ideas in Particle Physics]. Moskva: LENAND.

19. Levin, A. E. (2019) Vos’merichnyi put’ Vselennoi: umer Marri Gell-Mann – sozdatel’ sovremennoi modeli subatomnykh chastits [Eightfold Way of the Universe: Murray GellMann, Creator of the Modern Model of Subatomic Particles, Has Died], https://web.archive.org/web/20190604101438/https://nplus1.ru/material/2019/05/29/rip-murray-gell-mann.

20. Lipkin, H. J. (1973) Quarks for Pedestrians, Physics Reports, vol. 8, no. 3, pp. 173–268.

21. Nambu, Y. (1966) A Systematics of Hadrons in Subnuclear Physics, in: De-Shalit, A., Feshbach, H., and Van Hove, L. (eds.) Preludes in Theoretical Physics in Honor of V. Weisskopf. Amsterdam: North-Holland and New York: Wiley, pp. 133–142.

22. Nambu, Io. (Nambu, Y.) (1984) Kvarki [Quarks]. Moskva: Mir.

23. Ne’eman, Y. (1961) Derivation of Strong Interactions from a Gauge Invariance, Nuclear Physics, vol. 26, pp. 222–229.

24. Ne’eman, Y. (1987) Hadron Symmetry, Classification and Compositeness, in: Doncel, M., Hermann, A., Michel, L., and Pais, A. (eds.) Symmetries in Physics (1600–1980). Proceedings of the 1st International Meeting on the History of Scientific Ideas. Sant Feliu de Guixols, Catalonia, Spain. September 20–26, 1983. Bellaterra, Barcelona: Universitat Autonoma de Barcelona, pp. 499–540.

25. Neeman, Iu. (Ne’eman Y.) (1964) Vyvod silʼnykh vzaimodeistvii iz printsipa kalibrovochnoi invariantnosti [The Derivation of Strong Interactions from the Principle of Gauge Invariance], in: Ivanenko, D. D. (ed.) Elementarnye chastitsy i kompensiruiushchie polia. Sbornik statei [Elementary Particles and Compensating Fields. A Collection of Papers]. Moskva: Mir, pp. 176–185.

26. Okunʼ, L. B. (1981) Leptony i kvarki [Leptons and Quarks]. Moskva: Nauka.

27. Okun, L. B. (2015) On the Way from Sakatons to Quarks, in: Fritzsch, H., and Gell-Mann, M. (eds.) 50 Years of Quarks. Singapore: World Scientific, pp. 57–94.

28. Okun, L. B. (2015) On the Way from Sakatons to Quarks, International Journal of Modern Physics A, vol. 30, no. 1, 1530008.

29. Pais, A. (1986) Inward Bound: Of Matter and Forces in the Physical World. Oxford and New York: Clarendon Press and Oxford University Press.

30. Wess, J. E. (1960) Investigation of the Invariance Group in the Three Fundamental Fields Model, Il Nuovo Cimento, vol. 15, no. 1, pp. 52–72.

31. Zelʼdovich, Ia. A. (1965) Klassifikatsiia elementarnykh chastits i kvarki “v izlozhenii dlia peshekhodov” [Classification of Elementary Particles and Quarks “for Pedestrians”], Uspekhi fizicheskikh nauk, vol. 86, no. 2. S. 303–314.

32. Zelʼdovich, Ia. B. (1985) Izbrannye trudy. Chastitsy, iadra, Vselennaia [Selected Works. Particles, Nuclei, Universe]. Moskva: Nauka.

33. Zelʼdovich, Ia. B., Okunʼ L. B., and Pikelʼner, S. B. (1965) Kvarki: astrofizicheskii i fizikokhimicheskii aspekty [Quarks: Astrophysical and Physicochemical Aspects], Uspekhi fizicheskikh nauk, vol. 87, no. 1, pp. 113–124.

34. Zweig, G. (1964) An SU(3) Model for Strong Interaction Symmetry and Its Breaking. CERN Preprint 8419/TH-401(January 17, 1964), https://cds.cern.ch/record/352337.

35. Zweig, G. (2015) Concrete Quark, in: Fritzsch, H., and Gell-Mann, M. (eds.) 50 Years of Quarks. Singapore: World Scientific, pp. 25–56.

Система Orphus

Loading...
Up