Technology Development Phases, as Exemplified by the Evolution of Aircraft Power Plants

 
PIIS020596060031469-7-1
DOI10.31857/S0205960624010033
Publication type Article
Status Published
Authors
Affiliation: S. I. Vavilov Institute for the History of Science and Technology, Russian Academy of Sciences
Address: Moscow, Ul. Baltiyskaya, 14
Journal nameVoprosy istorii estestvoznaniia i tekhniki
EditionVolume 45 Issue 1
Pages58-78
Abstract

Several hypotheses concerning technology development patterns were tested on the dataset, prepared by the author. This dataset includes the data regarding dynamics of changes in airplane power plants used both in airplane production in the 20th century and in the development of new airplane models, the design features of 20,250 20th-century airplane models, and 39,000 records describing the production of these models. Five classes of airplanes were selected for analysis: two civil (passenger and general-purpose aircrafts) and three military (fighters, bombers, and attack aircrafts) classes.

 

According to the first hypothesis, the development of civil technologies goes through two different phases. During the first phase, a succession of technical solutions (in our case, the types of most widely used airplane engines) occurs, indicating a displacing competition. At a certain moment, however, this competition gives way to coexistence, in which each solution that has “survived” up to this moment retains its share in production for a long time. In the military sector, the technological arms race never stops and the stage of coexistence does not occur, which comprises the second hypothesis.

 

According to the third hypothesis, the development of designs using outdated methodology continues even after the new generation practically displaces the previous one from production. This behavior is typical for the engineering community and repeats time after time in both the civil and military sectors.

 

Finally, the fourth hypothesis states that, as technology develops, a product usually undergoes two periods: complication, which is accompanied by a rapid increase in quantitative characteristics and followed by simplification of operation and maintenance. This trend manifests, among other things, as a reduction in the number of main units in the product. In our case, this means a reduction in the number of engines installed on heavy airplanes.

 

It is shown that the collected data confirm the previously stated hypotheses.

Keywordshistory of technology, development of technology, technology development laws, aircraft engineering, history of aviation, development of airplane design, airplane power plants, engines
Received20.02.2023
Publication date29.03.2024
Number of characters33260
Cite  
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 0, views: 119

Readers community rating: votes 0

1. Afanas’ev, V. N. (2020) Analiz vremennykh riadov i prognozirovanie [Analysis of Time Series and Forecasting]. Saratov: IPR Media.

2. Alekseev, G. N. (1983) O nekotorykh metodologicheskikh voprosakh istoriko-tehnicheskikh issledovanii [On Some Methodological Issues of Historico-Technical Research], Iz istorii aviatsii i kosmonavtiki, iss. 47, pp. 65–102.

3. Aviatsionnye pravila. Chast’ 25. Normy letnoi godnosti samoletov transportnoi kategorii [Aviation Regulations. Part 25. Airworthiness Standards for Transport Category Airplanes] (1994). Moskva: Mezhdunarodnyi aviatsionnyi komitet.

4. Belʼkind, L. D., Veselovskii, O. N., Konfederatov, I. Ia., and Shneiberg, Ia. A. (1960) Istoriia energeticheskoi tekhniki. 2-e izd. [History of Power Technology. 2nd ed.]. Moskva and Leningrad: Gosenergoizdat.

5. Biushgens, G. S. (ed.) (1998) Aerodinamika, ustoichivost’ i upravliaemost’ sverkhzvukovykh samoletov [Aerodynamics, Stability and Controllability of Hypersonic Airplanes]. Moskva: Fizsmatlit.

6. Clarke, A. (1973) Profiles of the Future. 2nd ed. London: MacMillan.

7. Gorovoi, B. I., Lagosiuk, G. S., and Chernenko, Zh. S. (1977) Samolet An-26. Konstruktsiia i ekspluatatsiia [An-26 Aeroplane. Design and Maintenance]. Moskva: Transport.

8. Kachorovskii, I. B. (2008) Professiia – letchik. Vzgliad iz kabiny [Occupation: Pilot. A View from the Cockpit]. Sankt-Peterburg: Morkniga.

9. Khainlain, R. E. (Heinlein, R. A.) (1994) Astronavt Dzhons. Miry Roberta Khainlaina [Starman Jones. Robert Heinleinʼs Worlds]. Riga: Poliaris, vol. 7.

10. Klimov, V. T. (ed.) (2000) Pravda o sverkhzvukovykh samoliotakh [The Truth about Supersonic Airplanes]. Moskva: Moskovskii rabochii.

11. Kuzʼmin, Iu. V. (2019) Ot istorii tekhniki k zakonam razvitiia tekhniki [From the History of Technology to the Laws of Technological Development], in: Shcherbinin, D. Iu., and Fando, R. A. (eds.) Institut istorii estestvoznaniia i tekhniki im. S. I. Vavilova. Godichnaia nauchnaia konferentsiia, 2019 [S. I. Vavilov Institute for the History of Science and Technology. Annual Scientific Conference, 2019]. Saratov: Amirit, pp. 276–280.

12. Kuzʼmin, Iu. V. (2020) Istoriia sel’skokhoziaistvennogo samoletostroeniia [History of Agricultural Airplane Production], in: Kuzʼmin, Iu. V. (ed.) Legendy i mify aviatsii [Legends and Myths of Aviation]. Moskva: Russkie vitiazi, vol. 10, pp. 179–226.

13. Kuzʼmin, Iu. V. (2020) Konstruktorskie shkoly kak aktory istorii tekhniki. Na primere statisticheskogo analiza mirovogo samoletostroeniia [Design Schools as Actors in the History of Technology. As Exemplified by Statistical Analysis of Global Aircraft Engineering], in: Garskova, I. M. (ed.) Istoricheskie issledovaniia v kontekste nauki o dannykh: informatsionnye resursy, analiticheskie metody i tsifrovye tekhnologii: materialy mezhdunarodnoi konferentsii, Moskva, 4–6 dekabria 2020 g. [Historical Research in the Context of Data Science: Information Resources, Analytical Methods and Digital Technologies: Proceedings of International Conference, Moscow, December 4–6, 2020]. Moskva: MAKS Press, pp. 64–70.

14. Kuzʼmin, Iu. V. (2020) Sootnoshenie ob”emov proizvodstva i rezul’tativnosti konstruktorskikh rabot v mirovom aviastroenii XX v. Statisticheskii analiz bazy dannykh [The Ratio of Production and Effectiveness of Design Works in the Global Aircraft Industry in the 20th Century. Statistical Database Analysis], Istoricheskaia informatika, no. 2, pp. 61–82.

15. Kuzʼmin, Iu. V. (2021) Bibliograficheskii spravochnik po samoletam XX veka [Bibliographic Reference Book of 20th Century Airplanes]. Moskva: IIET RAN.

16. Kuzʼmin, Iu. V. (2022) Razvitie konstruktsii chetyrekhmestnykh samoletov v XX veke [Development of Design of Four-Seater Airplanes in the 20th Century], Istoricheskaia informatika, no. 3, pp. 56–80.

17. Kuzʼmin, Iu. V. (2022) Rol’ aviapromyshlennosti SShA v razvitii aviatsii obchshego naznacheniia [Role of US Aircraft Industry in the General Aviation Development], Vestnik Tambovskogo universiteta, seriia: Gumanitarnye nauki, vol. 27, no. 4, pp. 1108–1120.

18. Kuzʼmin, Iu. V. (2022) Umeiut li inzhenery upravliat’? Na primere istorii samoletostroeniia [Are Engineers Capable of Managing? As Exemplified by the History of Aircraft Construction], Aviatsiia i kosmonavtika, no. 9, pp. 23–29.

19. Kuzʼmin, Iu. V. (2023) Passazhirskoe samoletostroenie XX veka. Kolichestvennyi analiz [Passenger Aircraft Construction in the 20th Century. Quantitative Analysis], Nauchnyy vestnik MTGU GA, vol. 26, no. 3, pp. 8–24.

20. Popper, K. (Popper, K.) (1993) Nishcheta istoritsizma [The Poverty of Historicism]. Moskva: Progress.

21. Sobolev, D. A. (2018) Istoriia razvitiia passazhirskikh samoletov (1910–1970-е gody) [History of Development of Passenger Airplanes (1910s – 1970s)]. Moskva: Russkie vitiazi.

Система Orphus

Loading...
Up