Mathematical Works of K. Marx: A Century-­Long History of Search, Deciphering and Analysis

Publication type Article
Status Published
Affiliation: Bauman Moscow State Technical University
Address: Moscow, 2-ya Baumanskaya ul., 5-1
Affiliation: OOO “Poliedr”
Address: Ovchinnikovskaya nab., 22/24, str. 2
Affiliation: Bauman Moscow State Technical University, Mytishchi Branch
Address: Ul. 1-ya Institutskaya, 1
Journal nameVoprosy istorii estestvoznaniia i tekhniki
EditionVolume 42 1

This article is devoted to the history of search, deciphering and analysis of the archival mathematical manuscripts of a German philosopher K. Marx, and to the analysis of prerequisites for the emergence of these works and the goals pursued by the scholar when writing these works. It is shown that Marx’s interest in mathematics was spurred by his search for a formal mathematical tool for the analysis of economic processes. He was also attracted by previously unknown possibilities for applied studies based on the differential calculus. It is hypothesized that one of Marx’s goals in his analysis of the Taylor and Maclaurin theorems was modelling polynomial function from points table. It is shown that the mathematical apparatus used by Marx is based on the works that had been available to the European scientists of the time, first and foremost, to English scientists.

KeywordsK. Marx, archival manuscripts, the history of legacy, table data processing, interpolation
Publication date29.03.2021
Number of characters36935
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 0, views: 846

Readers community rating: votes 0

1. Boucharlat, J. L. (1838) Éléments de calcul différentiel et de calcul intégral. Paris: Bachelier, imprimeur-librairie pour les mathématiques.

2. Engels, F. (1961) Anti-Diuring [Anti-Dühring]. in: Marks, K., and Engels, F. (Marx, K., and Engels, F.) Sochineniia. 2-e izd. [Works. 2nd ed.]. Moskva: Gospolitizdat, vol. 20, pp. 1–338.

3. Engels, F. (1961) Dialektika prirody [Dialectics of Nature], in: Marks, K., and Engels, F. (Marx, K., and Engels, F.) Sochineniia. 2-e izd. [Works. 2nd ed.]. Moskva: Gospolitizdat, vol. 20, pp. 339–626.

4. Hall, Th. G. (1841) A Treatise on the Differential and Integral Calculus and the Calculus of Variations. Cambridge: The University Press and London: J. W. Parker.

5. Hemming, G. W. (1848) An Elementary Treatise on the Differential and Integral Calculus. Cambridge: Macmillan.

6. Hind, J. (1831) The Principles of the Differential Calculus. Cambridge: J. Smith.

7. Ianovskaia, S. A. (1933) O matematicheskikh rukopisyakh K. Marksa [On the Mathematical Manuscripts of K. Marx], Pod znamenem marksizma, no. 1, pp. 74–115.

8. Katolin, L. (1968) My byli togda derzkimi parniami… [We Were Daring Guys Then…], Znanie – sila, no. 3, pp. 15–17; no. 4, pp. 25–27; no. 5, pp. 2–5.

9. Katolin, L. (1968) Sud’ba “Matematicheskikh rukopisei” Marksa [The Fate of Marx’s “Mathematical manuscripts”], Nedelia, no. 10 (418).

10. Lacroix, S. F. (1810–1819) Traité du calcul différentiel et de intégral. Paris: Courcier, vols. 1–3.

11. Lafarg, P. (Lafargue, P.) (1967) Vospominaniia o Markse [Reminiscences of Marx]. Moskva: Politizdat.

12. Laskovaia, T. A., Rybnikov, K. K., and Chernobrovina, O. K. (2019) Matematicheskie issledovaniia Karla Marksa. Tseli, predposylki, istochniki [Karl Marx’s Mathematical Studies. Goals, Prerequisites, Sources], in: Algebra, teoriia chisel i diskretnaia geometriia: sovremennye problemy, prilozheniia i problemy istorii. Materialy XVII mezhdunarodnoi konferentsii, posviashchennoi 100-letiiu so dnia rozhdeniia professora N. I. Fel’dmana i 90-letiiu so dnia rozhdeniia professorov A. I. Vinogradova, A. V. Malysheva i B. F. Skubenko, Tula, 23–28 sentiabria 2019 g. [Algebra, Number Theory and Discrete Geometry: Modern Problems, Applications and Problems of History. Materials of the 17th International Conference Dedicated to the Centenary of the Birth of Professor N. I. Feldman and the 90th Anniversary of the Birth of Professors A. I. Vinogradov, A. V. Malyshev, and B. F. Skubenko, Tula, September 23–28, 2019]. Tula: TGPU im. L. N. Tolstogo, pp. 244–247.

13. Lenin, V. I. (1950) Sobranie sochinenii. 4-e izd. [Collected Works. 4th ed.]. Moskva: Gospolitizdat, vol. 29.

14. Maiskii, I. M. (1961) Blizko – daleko [Close – Far Away]. Moskva: Detskaia literatura.

15. Marks, K. (Marx, K.) (1968) Matematicheskie rukopisi [Mathematical Manuscripts]. Moskva: Nauka.

16. Matthews, P. H. (2002) The Dialectics of Differentiation: Marx’s Mathematical Manuscripts and Their Relation to His Economics, Middlebury College Working Paper Series, No. 0203.

17. Moigno (1840–1844). Leçons de calcul différentiel et de calcul intégral: rédigées d’après les méthodes et les ouvrages publiées ou inédits de A. L. Cauchy. Paris: Bachelier.

18. Molodshii, V. N. (1969) O matematicheskikh rukopisyakh K. Marksa [On the Mathematical Manuscripts of K. Marx], Matematika v shkole, no. 1, pp. 10–23.

19. Molodshii, V. N. (1983) Matematicheskie rukopisi K. Marksa i razvitie istorii matematiki v SSSR [Mathematical Manuscripts of K. Marx and the Development of the History of Mathematics in the USSR], Voprosy istorii estestvoznaniia i tekhniki, no. 2, pp. 29–34.

20. Rozov, N. Kh. (1968) Matematicheskie rukopisi Karla Marksa [Karl Marx’s Mathematical Manuscripts], Uspekhi matematicheskikh nauk, vol. 23, no. 5 (143), pp. 205–211.

21. Rybnikov, K. A. (1954) O rabotakh K. Marksa po matematike: dis. … d-ra fiz.-mat. nauk [On the Mathematical Works of K. Marx. Thesis for the Doctor of Physical and Mathematical Sciences Degree]. Moskva.

22. Rybnikov, K. A. (1958) K voprosu o ponyatii funktsii [On the Concept of Function], Voprosy filosofii, no. 11, pp. 89–92.

23. Rybnikov, K. K., Chernyshova, A. G., and Evseev, N. V. (2017) Ob odnom klasse matematicheskikh metodov analiza vremennykh riadov. Vozmozhnosti prognozirovaniia i aposteriornykh issledovanii osobennostei sotsial’no-ehkonomicheskikh protsessov [On a Class of Mathematical Methods for Time Series Analysis. Possibilities for Forecasting and A Posteriori Studies of the Features of Socio-Economic Processes], Lesnoi vestnik (Forestry Bulletin), vol. 21, no. 6, pp. 109–113.

24. Sauri (1778) Cours complet de mathématiques. Paris: J.-F. Bastien, vol. 5.

25. Struik, D. J. (1948) Marx and Mathematics, Science & Society, vol. 12, no. 1: A Centenary of Marxism, pp. 181–196.

Система Orphus