views: 1655
Readers community rating: votes 0
1. Evtushenko Yu.G. Optimizatsiya i bystroe avtomaticheskoe differentsirovanie. M.: VTs RAN, 2013. 144 s.
2. Pollak Eh. Chislennye metody optimizatsii. Edinyj podkhod. M.: Mir, 1974. 374 s.
3. Moiseev N.N. Metody dinamicheskogo programmirovaniya v teorii optimal'nykh upravlenij. I // ZhVM i MF. 1964. T. 4. № 3. S. 485–494.
4. Moiseev H.H. Optimizatsiya i upravlenie (ehvolyutsiya idej i perspektivy) // Izv. AN SSSR Tekhn. kibernetika. 1974. № 4. S. 3–16.
5. Grachev N.I., Evtushenko Yu.G. Biblioteka programm dlya resheniya zadach optimal'nogo upravleniya // ZhVM i MF. 1979. T. 19. № 2. S. 367–387.
6. Karpenko A.P. Sovremennye algoritmy poiskovoj optimizatsii. Algoritmy, vdokhnovlennye prirodoj. M.: Izd-vo MGTU im. N.Eh. Baumana, 2014. 446 s.
7. Holland J.N. Adaptation in Natural and Artificial Systems / Michigan: Univ. Michigan Press, 1975. 183 p.
8. Ragimov A.B. Ob odnom podkhode k resheniyu zadach optimal'nogo upravleniya na klassakh kusochno-postoyannykh, kusochno-linejnykh i kusochno-zadannykh funktsij // Vestn. Tomsk. gos. un-ta. Upravlenie, vychislitel'naya tekhnika i informatika. 2012. № 2. S. 20–30.
9. Vasil'ev F.P. Chislennye metody resheniya ehkstremal'nykh zadach. M.: Nauka, 1988. 550 c.
10. Bazara M., Shetti K. Nelinejnoe programmirovanie. Teoriya i algoritmy. M.: Mir, 1982. 584 c.
11. Karmanov V.G. Matematicheskoe programmirovanie. M.: Fizmatlit, 2008. 264 s.
12. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh. M.: Vyssh. shk., 2005. 544 s.
13. Li Eh.B., Markus L. Osnovy teorii optimal'nogo upravleniya. M.: Nauka, 1972. 578 s.
14. Sobol' B.V., Meskhi B.Ch., Kanygin G.I. Metody optimizatsii. Praktikum. Rostov n/D: Feniks, 2009. 380 s.
15. Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization // 3rd Intern. Conf. for Learning Representations. arXiv:1412.6980v8 [cs.LG]. San Diego, 2015. 15 p. URL: https://arxiv.org/pdf/1412.6980v8.pdf.
16. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989. 412 p.
17. Panteleev A.V., Skavinskaya D.V., Aleshina E.A. Metaehvristicheskie algoritmy poiska optimal'nogo programmnogo upravleniya. M.: INFRA-M, 2016. 396 s.
18. Storn R., Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces // J. Global Optimization. 1997. №11. P. 341–359.
19. Kennedy J., Eberhart R. Particle Swarm Optimization // Proc. IEEE Intern. Conf. on Neural Networks IV. Perth. 1995. P. 1942–1948.
20. Karpenko A.P., Seliverstov E.Yu. Global'naya optimizatsiya metodom roya chastits. Obzor // Informatsionnye tekhnologii. 2010. № 2. S. 25–34.
21. Pham D.T., Ghanbarzadeh A., E. Koc, et al. The Bees Algorithm - A Novel Tool for Complex Optimisation Problems // Intelligent Production Machines and Systems - 2nd I*PROMS Virtual Intern. Conf. Elsevier Ltd. 2006. P. 454–459.
22. Grishin A.A., Karpenko A.P. Issledovanie ehffektivnosti metoda pchelinogo roya v zadache global'noj optimizatsii // Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.Eh. Baumana. 2010. № 8.
23. Yang X.S. A New Metaheuristic Bat-inspired Algorithm // Studies in Computational Intelligence. 2010. Vol. 284. P. 65–74.
24. Mirjalili S., Mirjalili S.M., Lewis A. Grey Wolf Optimizer // Advances in Engineering Software. 2014. V. 69. P. 46–61.
25. Rapoport L.B. Otsenka oblasti prityazheniya v zadache upravleniya kolesnym robotom // AiT. 2006. № 9. S. 69–89.
26. Pesterev A.V. Sintez linearizuyuschego upravleniya v zadache stabilizatsii dvizheniya avtomobilepodobnogo robota vdol' krivolinejnogo puti // Izv. RAN. TiSU. 2013. №5. S. 153–165.