Effects of influences of recombinant IFNα2b on the level of expression of the CD16, CD66b, CD33, CD11b receptors of neutrophilic granulocytes of conditionally healthy children in the experiment in vitro

 
PIIS102872210002432-0-1
DOI10.31857/S102872210002432-0
Publication type Article
Status Published
Authors
Affiliation: Kuban State Medical University
Affiliation:
Kuban State Medical University
Peoples’ Friendship University of Russia
Affiliation: Kuban State Medical University
Affiliation: Kuban State Medical University
Affiliation: Kuban State Medical University
Affiliation: Kuban State Medical University
Affiliation: Kuban State Medical University
Affiliation: Kuban State Medical University
Journal nameRossiiskii immunologicheskii zhurnal
EditionVolume 12 Issue 3
Pages486-492
Abstract

The polyfunctionality of neutrophilic granulocytes (NG) is the result of the rich equipment of NGs by structures that respond subtly to changes in the extracellular environment and intracellular processes. At the present time there is a wave of publications that note the importance of the full participation of NG in the cascade of immunological reactions. Wherein the authors assign a key role to NG, both at the start-up and subsequent regulation and realization of the immune response. The existence of diff erent populations of NGs diff ering in the profi le of equipping with membrane antigens and exhibiting various functional possibilities is shown. The aim of this study was to study the eff ects of recombinant IFNα2b (rIFNα2b) on a non-transformed and experimentally transformed subpopulation CD16+CD66b+CD33+CD11b+NG in vitro of peripheral blood samples of conditionally healthy children. The expression level of the membrane NG receptors was determined by fl ow cytometry. The studied indicators of untransformed NG (control) and NG after incubation with rIFNα2b and N-formyl-methionyl-leucyl-phenylalanine (fMLP) were assessed. The immunoregulatory eff ect of rIFNα2b on the nontransformed phenotype CD16+CD66b+CD33+CD11b+NG and the immunomodulatory eff ects of rIFNα2b on the fMLP-transformed NG phenotype of peripheral blood of conditionally healthy children were established.

Keywordsneutrophilic granulocyte, recombinant rIFNα2b, phenotype, receptor
Received12.01.2019
Publication date12.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1543

Readers community rating: votes 0

1. Scapini P., Marini O., Tecchio C., Cassatella M. A. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 2016, 273(1) 48–60. DOI: 10.1111/imr.12448.

2. Kobayashi Y. Neutrophil biology: an update. EXCLI J. 2015, 14, 220–227. DOI: 10.17179/excli2015–102.

3. Nesterova I. V., Kolesnikova N. V., Chudilova G. A., Lomtatidze L. V., Kovaleva S. V., Evglevskij A. A., Nguen T. Z.L. Novyj vzglyad na nejtrofil'nye granulotsity: pereosmyslenie starykh dogm. (Chast' 1). Infektsiya i Immunitet 2017, 7(3), 219– 230. DOI:10.15789/2220–7619–2017–3–219–230. [Nesterova I. V., Kolesnikova N. V., Chudilova G. A., Lomtatidze L. V., Kovaleva S. V., Yevglevsky A. A., Nguyen T. Z.L. A new look at neutrophilic granulocytes: rethinking old dogmas. (Part 1). Infection and immunity 2017, 7(3), 219–230. DOI:10.15789/2220–7619–2017–3–219–230. Russian].

4. Garley M., Jablonska E. Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp. (Warsz). 2018, 66(1), 21–30. DOI: 10.1007/s00005–017–0476–4.

5. Nesterova I. V., Kolesnikova N. V., Chudilova G. A., Lomtatidze L. V., Kovaleva S. V., Evglevskij A. A., Nguen T. Z.L. Novyj vzglyad na nejtrofil'nye granulotsity: pereosmyslenie starykh dogm. (Chast' 2). Infektsiya i immunitet 2018, 8(1), 7–18. DOI: 10.15789/2220–7619–2018–1–7–18. [Nesterova I. V., Kolesnikova N. V., Chudilova G. A., Lomtatidze L. V., Kovaleva S. V., Yevglevsky A. A., Nguyen T. Z.L. A new look at neutrophilic granulocytes: rethinking old dogmas. (Part 2). Infection and immunity 2017, 7(3), 219–230. DOI: 10.15789/2220–7619–2018–1–7–18. Russian].

6. Elghetany M. Surface antigen changes during normal neutrophilic development: a critical review. Blood Cells Mol. Dis. 2002, 28 (2): 260–274. PMID12064921.

7. Garnache-Ottou F., Chaperot L., Biichle S., Ferrand C., Remy-Martin J. P., Deconinck E., de Tailly P. D., Bulabois B., Poulet J., Kuhlein E., Jacob M. C., Salaun V., Arock M., Drenou B., Schillinger F., Seilles E., Tiberghien P., Bensa J. C., Plumas J., Saas P. Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood 2005, 105(3), 1256–1264. DOI: 10.1182/blood-2004–06–2416.

8. Hernandez-Caselles T., Martinez-Esparza M., Perez-Oliva A. B., Quintanilla-Cecconi A. M., Garcia-Alonso A., Alvarez-Lopez D. M., Garcia-Penarrubia P. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. Journal of Leukocyte Biology 2006, 79(1), 46–58. DOI: 10.1189/jlb.0205096.

9. Crocker P. R., Zhang J. New I-type lectins of the CD33- related siglec subgroup identifi ed through genomics. Biochemical Society Symposia 2002, 69; 83–94. DOI: 10.1042/bss0690083.

10. Bandura D. R., Baranov V. I., Ornatsky O. I., Antonov A., Kinach R., Udong Lou X., Pavlov S., Vorobiev S., Dick J. E. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-fl ight mass spectrometry. Analytical Chemistry 2009, 81, 6813–6822. DOI: 10.1021/ac901049w.

11. Ornatsky O., Bandura D., Baranov V., Nitz M., Winnik M. A., Tanner S. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods 2010, 361(1–2), 1–20. DOI: 10.1016/j.jim.2010.07.002.

12. Schroder A. K., Uciechowski P., Fleischer D., Rink L. Crosslinking of CD66b on peripheral blood neutrophils mediates the release of interleukin-8 from intracellular storage. Hum. Immunol. 2006, 67(9), 676–682. DOI: 10.1016/j.humimm.2006.05.004.

13. Mandruzzato S., Brandau S., Britten C. M., Bronte V., Damuzzo V., Gouttefangeas C., Maurer D., Ottensmeier C., van der Burg S. H., Welters M. J., Walter S. Toward harmonized phenotyping of human myeloidderived suppressor cells by fl ow cytometry: results from an interim study. Cancer Immunol. Immunother. 2016, 65(2), 161–169. DOI: 10.1007/s00262–015–1782–5.

14. Zhang Y., Boesen C. C., Radaev S., Brooks A. G., Fridman W. H., Sautes-Fridman C., Sun P. D. Crystal structure of the extracellular domain of a human Fc?RIII”. Immunity. 2000, 13 (3), 387–95. DOI:10.1016/S1074–7613(00)00038–8.

15. Nesterova I. V. Preparaty interferona al'fa v klinicheskoj praktike: kogda i kak. Lechaschij vrach 2017, 9, 66–76. https://www.lvrach.ru/2017/9/ [Nesterova I. V. Interferon alfa preparations in clinical practice: when and how. Treatment doctor 2017, 9, 66–76. https://www.lvrach.ru/2017/9/. Russian].

16. Brandacher G., Margreiter D., Fuchs D. Implications of IFN-gamma-mediated tryptophan catabolism on solid organ transplantation. Curr. Drug Metab. 2007, 8(3), 273–282. PMID: 17430115.

17. Sato T., Hongu T., Sakamoto M., Funakoshi Y., Kanaho Y. Molecular mechanisms of N-Formyl-Methionylleucyl- phenylalanine-induced superoxide generation and degranulation in mouse neutrophils: phospholipase D is dispensable. Mol. Cell Biol. 2013, 33(1), 136–145. DOI: 10.1128/MCB.00869–12.

18. Schmidt T., Brodesser A., Schnitzler N., Gruger T., Brandenburg K., Zinserling J., Zundorf J. CD66b overexpression and loss of C5a receptors as surface markers for Staphylococcus aureus-induced neutrophil dysfunction. PLoS ONE2015, 10(7), e0132703. DOI: 10.1371/journal.pone.0132703.

Система Orphus

Loading...
Up