Интерлейкин-6: связь воспаления с выносливостью?

 
Код статьиS102872210002379-1-1
DOI10.31857/S102872210002379-1
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация: Лицей Вторая Школа
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Аффилиация:
Институт молекулярной биологии им. В.А. Энгельгардта РАН
МГУ им. М.В. Ломоносова
Название журналаРоссийский иммунологический журнал
ВыпускТом 12 Номер 4
Страницы586-592
Аннотация

Системное воспаление может приводить к перестройке энергетического обмена в организме, что необходимо для последующей мобилизации ресурсов для иммунного ответа. Воспаление является неотъемлемой частью многих метаболических заболеваний, однако молекулярные основы взаимодействия воспаления и метаболизма не до конца изучены. Провоспалительный цитокин интерлейкин-6 (IL-6) участвует в регуляции энергетического обмена, в том числе при интенсивных физических нагрузках. В работе была изучена важность сигнального пути IL-6 в регуляции физической активности мышей в условиях системного воспаления на фоне генетического дефицита Il-6. Мыши с полным нокаутом Il-6 характеризовались снижением способности выполнять тест на координацию на беговом тренажере Rotarod. С другой стороны, в отличие от мышей дикого типа у таких мышей не снижалась выносливость после введения ЛПС. В мышах дикого типа ЛПС вызывает продукцию IL-6, который, в свою очередь, участвует в регуляции энергетического обмена в организме, тем самым, способствуя снижению выносливости у мышей. Поскольку системные блокаторы IL-6 или его рецептора применяются в клинике для лечения целого ряда заболеваний, результаты нашей работы могут иметь клиническую значимость.

Ключевые словаIL-6, энергетический обмен, Rotarod, липополисахарид
Источник финансированияРабота выполнена при поддержке гранта РНФ № 14–25–00160.
Получено31.01.2019
Дата публикации31.01.2019
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1121

Оценка читателей: голосов 0

1. Wang H., Ye J. Regulation of energy balance by inflammation: Common theme in physiology and pathology. Rev Endocr Metab Disord. 2015, 16, 47–54.

2. Hunter P. The infl ammation theory of disease. EMBO Rep. 2012, 13, 968–970.

3. Dantzer R. Cytokine-induced sickness behavior: Where do we stand? Brain Behav Immun. 2001, 15, 7–24.

4. Pedersen B. K. Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exerc 2012, 44, 392–396.

5. Northoff H., Berg A. Immunological mediators as parameters of the reaction to strenuous exercise. Int J Sports Med 1991, 12, S9–S15.

6. Hiscock N., Chan S. M. H., Bisucci T., Darby I. A., Febbraio M. A. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fi ber type specifi city. FASEB J 2004, 12, 1–12.

7. Adser H., Wojtaszewski J. F.P., Jakobsen A. H., Kiilerich K., Hidalgo J., Pilegaard H. Interleukin-6 modifies mRNA expression in mouse skeletal muscle. Acta Physiol. 2011, 202, 165–173.

8. Gudiksen A., Schwartz C. L., Bertholdt L., Joensen E., Knudsen J. G., Pilegaard H. Lack of skeletal muscle IL-6 aff ects pyruvate dehydrogenase activity at rest and during prolonged exercise. PLoS One 2016, 11, 1–17.

9. Kurauti M.A., Costa-Júnior J.M., Ferreira S. M., Santos G. J., Sponton C. H.G., Carneiro E. M., Telles G. D., Chacon-Mikahil M. P. T., Cavaglieri C. R., Rezende L. F., Boschero A. C. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep. 2017, 7, 46750.

10. Reihmane D., Dela F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci. 2014, 14, 242–50.

11. Molinero A., Fernandez-Perez A., Mogas A., Giralt M., Comes G., Fernandez-Gayol O., Vallejo M., Hidalgo J. Role of muscle IL-6 in gender-specifi c metabolism in mice. PLoS One 2017, 12, 1–20.

12. Fäldt J., Wernstedt I., Fitzgerald S. M., Wallenius K., Bergström G., Jansson J. O. Reduced exercise endurance in interleukin-6-defi cient mice. Endocrinology 2004, 145, 2680–2686.

13. Cavalli G., Justice J. N., Boyle K. E., D’Alessandro A., Eisenmesser E. Z., Herrera J. J., Hansen K. C., Nemkov T., Stienstra R., Garlanda C., Mantovani A., Seals D. R., Dagna L., Joosten L. A.B., Ballak D. B., Dinarello C. A. Interleukin 37 reverses the metabolic cost of infl ammation, increases oxidative respiration, and improves exercise tolerance. Proc Natl Acad Sci. 2017, 114, 2313–2318.

14. Sparkman N. L., Buchanan J. B., Heyen J. R.R., Chen J., Beverly J. L., Johnson R. W. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinfl ammatory cytokines in hippocampal neuronal cell layers. J Neurosci. 2006, 26, 10709–10716.

15. Quintana A., Erta M., Ferrer B., Comes G., Giralt M., Hidalgo J. Astrocyte-specifi c defi ciency of interleukin-6 and its receptor reveal specifi c roles in survival, body weight and behavior. Brain Behav Immun. 2013, 27, 162–173.

16. Justice J. N., Carter C. S., Beck H. J., Gioscia-Ryan R. A., McQueen M., Enoka R. M., Seals D. R. Battery of behavioral tests in mice that models age-associated changes in human motor function. Age (Omaha) 2014, 36, 583–595.

17. Dantzer R., O’Connor J. C., Freund G. G., Johnson R. W., Kelley K. W. From infl ammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci. 2008, 9, 46–56.

18. Dunn A. J., Swiergiel A. H., de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev. 2005, 29, 891–909.

19. Kroetsch J. T., Levy A. S., Zhang H., Aschar-Sobbi R., Lidington D., Off ermanns S., Nedospasov S. A., Backx P. H., Heximer S. P., Bolz S-S. Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nat Commun. 2017, 8, 14805.

20. Wang X., Chen H., Tian R., Zhang Y., Drutskaya M. S., Wang C., Ge J., Fan Z., Kong D., Wang X., Cai T., Zhou Y., Wang J., Wang J., Wang S., Qin Z., Jia H., Wu Y., Liu J., Nedospasov S. A., Tredget E. E., Lin M., Liu J., Jiang Y., Wu Y. Macrophages induce AKT/beta-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017, 8,14091.

21. Chiba K., Tsuchiya M., Koide M., Hagiwara Y. Involvement of IL-1 in the maintenance of masseter muscle activity and glucose homeostasis. PLoS One 2015, 10: e0143635.

22. Lutosławska G. Interleukin-6 as an adipokine and myokine: The regulatory role of cytokine in adipose tissue and skeletal muscle metabolism. Hum Mov. 2012, 13, 372–379.

23. Wallenius V., Wallenius K., Ahren B., Rudling M., Carlsten H., Dickson S. L., OhlssonvC., Jansson J.-O. Interleukin-6-defi cient mice develop mature-onset obesity. Nat Med. 2002, 8, 75–79.

24. Luh L.M., Das I., Bertolotti A. qMotor, a set of rules for sensitive, robust and quantitative measurement of motor performance in mice. Nat Protoc. 2016, 12, 1451–1457.

Система Orphus

Загрузка...
Вверх