views: 1397
Readers community rating: votes 0
1. Chera S., Herrera P. L. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr. Opin. Genet. Dev. 2016, 40, 1–10.
2. Thowfeequ S., Myatt E. J., Tosh D. Transdiff erentiation in developmental biology, disease, and in therapy. Dev Dyn. 2007, 236, 3208–3217.
3. Ungefroren H., Fandrich F. The programmable cell of monocytic origin (PCMO): a potential adult stem/ progenitor cell source for the generation of islet cells. Adv. Exp. Med. Biol. 2010, 654, 667–82.
4. Yamada T., Cavelti-Weder C., Caballero F., Lysy P. A., Guo L. et al. Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing ?-like cells. Endocrinology. 2015, 156(6), 2029–38.
5. Teichenne J., Morro M., Casellas A., Jimenez V., Tellez N. et al. Identifi cation of miRNAs involved in reprogramming acinar cells into insulin producing cells. PLoS One. 2015, 10(12): e0145116.
6. Klein D., Alvarez-Cubela S., Lanzoni G., Vargas N., Prabakar K. R. et al. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes. 2015, 64(12), 4123–34.
7. Sasaki S., Miyatsuka T., Matsuoka T. A., Takahara M., Yamamoto Y. et al. Activation of GLP-1 and gastrin signalling induces in vivo reprogramming of pancreatic exocrine cells into beta cells in mice. Diabetologia. 2015, 58(11), 2582–91.
8. Lemper M., Leuckx G., Heremans Y., German M. S., Heimberg H. et al. Reprogramming of human pancreatic exocrine cells to ?-like cells. Cell Death Diff er. 2015, 22(7), 1117–1130.
9. Jukic T., Ihan A., Jukic D. Tetrahydrophthalazine derivative sodium nucleinate exert its anti-infl ammatory eff ects through inhibition of oxidative burst in human monocytes. Coll. Antropol. 2012, 36, 409–412.
10. Danilova I. G., Blinkova N. B., Gette I. F., P'yankova Z. A., Belousova A. V. i dr. Vliyanie aktivatsii makrofagov na morfofunktsional'noe sostoyanie tuchnykh kletok pecheni krys s alloksanovym diabetom. Rossijskij immunologicheskij zhurnal. 2016, 3, 244–246. [Danilova I. G., Blinkova N. B., Gette I. F., P’yankova Z. A., Belousova A. V. et al. Impact of macrophage activation on the mast cell morphofunctional state in liver of alloxanised diabetic rats. Russian Immunological Journal. 2016, 3, 244–246. Russian].
11. Danilova I. G., Sarapultsev P. A., Medvedeva S. U., Gette I. F., Bulavintceva T. S. et al. Morphological restructuring of myocardium during the early phase of experimental diabetes mellitus. Anat Rec (Hoboken). 2015, 298(2), 396–407.
12. Danilova I. G., Bulavintceva T. S., Gette I. F., Medvedeva S. Y., Emelyanov V. V. et al. Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed. Pharmacother. 2017, 95, 103–110.
13. Bouwens L., Pipeleers D. G. Extra-insular beta cells associated with ductules are frequentin adult human pancreas. Diabetologia. 1998, 41, 452–459.
14. Bulavintseva T. S. Rol' makrofagov v protsesse podderzhaniya obschej chislennosti ?-kletok podzheludochnoj zhelezy pri alloksanovom diabete. Simbioz Rossiya 2011: materialy IV Vserossijskogo s mezhdunarodnym uchastiem kongressa studentov i as pi ran tov-bio lo gov. Izd-vo Voronezhskogo gosudarstvennogo universiteta. Voronezh 2011, T. 2, 8–10. [Bulavintseva T. S. The role of macrophages in the process of maintaining the total number of pancreatic ?-cells in alloxan diabetes. Symbiosis Russia 2011: materials of the IV Russian with the international participation congress of students and postgraduate biologists. Publishing house of Voronezh State University. Voronezh 2011, V. 2, 8–10. Russian].
15. Spasov A. A., Voronkova M. P., Singur G. L., Cheplyaeva N. I., Chepurnova M. V. Ehksperimental'naya model' sakharnogo diabeta tipa 2. Biomeditsina. 2011, 3, 12–18. [Spasov A. A., Voronkova M. P., Singur G. L., Cheplyaeva N. I., Chepurnova M. V. Experimental model of type 2 diabetes mellitus. Biomedicine. 2011, 3, 12–18. Russian].