Number of purchasers: 0, views: 1755
Readers community rating: votes 0
1. Aldeias V., Dibble H.L., Sandgathe D., Goldberg P., McPherron S.J., 2016. How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. Journal of Archaeological Science, 67, pp. 64–79.
2. Bader O.N., 1965. Kapovaya peshchera. Paleoliticheskaya zhivopis' [The Kapova cave. Paleolithic painting]. Moscow: Nauka. 47 p. (In Russian and French).
3. Baffier D., Girard M., Menu M., Vignaud C., 1999. La couleur à la grande grotte d'Arcy-sur-Cure (Yonne). L'Anthropologie, vol. 103, no. 1, pp. 1–21.
4. Bennett J.L., 1999. Thermal alteration of buried bone. Journal of Archaeological Science, vol. 26, iss. 1, pp. 1–8.
5. Cavallo G., Fontana F., Gialanella S., Gonzato F., Riccardi M.P., Zorzin R., Peresani M., 2018. Heat Treatment of Mineral Pigment During the Upper Palaeolithic in North-East Italy. Archaeometry, vol. 60, iss. 5, pp. 1045–1061.
6. Chalmin E., Menu M., Pomiès M.P., Vignaud C., Aujoulat N., Geneste J.M., 2004. Les blasons de Lascaux. L'anthropologie, vol. 108, iss. 5, pp. 571–592.
7. Chalmin E., Vignaud C., Menu M., 2004. Palaeolithic painting matter: natural or heat-treated pigment? Applied physics A, vol. 79, no. 2, pp. 187–191.
8. Dayet L., Faivre J.P., Le Bourdonnec F.X., Discamps E., Royer A., Claud É., Lahaye C., Cantin N., Tartar E., Queffelec A., Gravina B., Turq A., d'Errico F., 2019. Manganese and iron oxide use at Combe-Grenal (Dordogne, France): A proxy for cultural change in Neanderthal communities. Journal of Archaeological Science: Reports, 25, pp. 239–256.
9. Gialanella S., Belli R., Dalmeri G., Lonardelli I., Mattarelli M., Montagna M., Toniutti L., 2011. Artificial or natural origin of hematite-based red pigments in archaeological contexts: the case of Riparo Dalmeri (Trento, Italy). Archaeometry, vol. 53, no. 5, pp. 950–962.
10. Gialanella S., Girardi F., Ischia G., Lonardelli I., Mattarelli M., Montagna M., 2010. On the goethite to hematite phase transformation. Journal of thermal analysis and calorimetry, vol. 102, no. 3, pp. 867–873.
11. González G., Sagarzazu A., Villalba R., 2000. Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD. Materials Research Bulletin, vol. 35, no. 14–15, pp. 2295–2308.
12. Hård A., Sivik L., 1981. NCS – Natural Color System: a Swedish standard for color notation. Color Research & Application, vol. 6, iss. 3, pp. 129–138.
13. Henshilwood C.S., d’Errico F., Van Niekerk K.L., Coquinot Y., Jacobs Z., Lauritzen S.E., Menu M., García-Moreno R., 2011. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science, vol. 334, iss. 6053, pp. 219–222.
14. Hoare S., 2020. Assessing the Function of Palaeolithic Hearths: Experiments on Intensity of Luminosity and Radiative Heat Outputs from Different Fuel Sources. Journal of Paleolithic Archaeology, pp. 1–29.
15. Hubbard C.R., Evans E.H., Smith D.K., 1976. The reference intensity ratio, I/Ic, for computer simulated powder patterns. Journal of Applied Crystallography, vol. 9, iss. 2, pp. 169–174.
16. Kotov V.G., Lyakhnitskiy Yu.S., Piotrovskiy Yu.Yu., 2004. The technique of application and the composition of the paint layer of the images in the Shulgan-Tash (Kapova) cave. Ufimskiy arkheologicheskiy vestnik [The Ufa archaeological herald], 5, pp. 65–71. (In Russ.)
17. Landers M., Gilkes R.J., Wells M.A., 2009. Rapid dehydroxylation of nickeliferous goethite in lateritic nickel ore: X-ray diffraction and TEM investigation. Clays and Clay Minerals, vol. 57, no. 6, pp. 751–770.
18. Löffler L., Mader W., 2006. Anisotropic X-ray peak broadening and twin formation in hematite derived from natural and synthetic goethite. Journal of the European Ceramic Society, vol. 26, iss. 1–2, pp. 131–139.
19. Ma J., Teo J., Mei L., Zhong Z., Li Q., Wang T., Xiaochuan D., Jiabiao L., Zheng W., 2012. Porous platelike hematite mesocrystals: synthesis, catalytic and gas-sensing applications. Journal of Materials Chemistry, vol. 22, iss. 23, pp. 11694–11700.
20. Naono H., Fujiwara R., 1980. Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH. Journal of Colloid and Interface Science, vol. 73, iss. 2, pp. 406–415.
21. Needham A., Croft S., Kröger R., Robson H.K., Rowley C.C., Taylor B., Jones A.G., Conneller C., 2018. The application of micro-Raman for the analysis of ochre artefacts from Mesolithic palaeo-lake Flixton. Journal of Archaeological Science: Reports, 17, pp. 650–656.
22. Pakhunov A.C., Zhitenev V.C., 2015. New data on Upper Paleolithic paint recipes: scientific examination of massive paint remains from the Kapova cave, Southern Urals. Stratum plus, 1, pp. 125–135. (In Russ.)
23. Pomiés M.P., Menu M., Vignaud C., 1999. Red palaeolithic pigments: natural hematite or heated goethite? Archaeometry, vol. 41, iss. 2, pp. 275–285.
24. Pomies M.P., Menu M., Vignaud C., 1999. TEM observations of goethite dehydration: application to archaeological samples. Journal of the European Ceramic Society, vol. 19, iss. 8, pp. 1605–1614.
25. Pomies M.P., Morin G., Vignaud C., 1998. XRD study of the goethite-hematite transformation: application to the identification of heated prehistoric pigments. European Journal of solid state and Inorganic Chemistry, vol. 35, iss. 1, pp. 9–25.
26. Ruan H.D., Frost R.L., Kloprogge J.T., Duong L., 2002. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 58, iss. 5, pp. 967–981.
27. Saito G., Kunisada Y., Nomura T., Sakaguchi N., Akiyama T., 2016. Twin formation in hematite during dehydration of goethite. Physics and chemistry of minerals, vol. 43, no. 10, pp. 749–757.
28. Salomon H., Vignaud C., Coquinot Y., Beck L., Stringer C., Strivay D., d’Errico F., 2012. Selection and heating of colouring materials in the Mousterian level of Es-Skhul (c. 100 000 years BP, Mount Carmel, Israel). Archaeometry, vol. 54, iss. 4, pp. 698–722.
29. Salomon H., Vignaud C., Lahlil S., Menguy N., 2015. Solutrean and Magdalenian ferruginous rocks heat-treatment: accidental and/or deliberate action? Journal of Archaeological Science, 55, pp. 100–112.
30. Šcelinskij V.E., Širokov V.N., 1999. Höhlenmalerei im Ural: Kapova und Ignatievka; Die altsteinzeitlichen Bilderhöhlen im südlichen Ural. Sigmaringen: Thorbecke. 172 p.
31. Shchelinskiy V.E. Otchet ob arkheologicheskikh raskopkakh Kapovoy (Shul'gan-Tash) peshchery v Burzyanskom rayone Bashkirskoy ASSR Yuzhno-Ural'skoy paleoliticheskoy ekspeditsiey, stoyanki Il'skaya II v Severskom rayone i mestonakhozhdeniya Shirokiy mys v Tuapsinskom rayone Krasnodarskogo kraya Predkavkazskim paleoliticheskim otryadom LO instituta arkheologii AN SSSR v 1986 godu [Report on the archaeological excavations of the Kapova (Shulgan-Tash) cave in Burzyan district of Bashkir ASSR by the South Ural Paleolithic expedition, the Ilsky II site in Seversk district and the location of Shirokiy Mys in Tuapse district of Krasnodar Territory by the Ciscaucasian Paleolithic detachment of the Leningrad Branch of the Institute of Archaeology at the USSR Academy of Sciences in 1986]. Arkhiv Instituta arkheologii Rossiyskoy akademii nauk [Archive of the Institute of Archaeology RAS], R-1, № 12413.
32. Shchelinskiy V.E., 2016. The paleolithic sanctuary in Shulgan-Tash/Kapova cave (Bashkortostan): wall painting and archaeological evidence. Drevnie svyatilishcha: arkheologiya, ritual, mifologiya: materialy mezhdunarodnogo nauchnogo simpoziuma [Ancient sanctuaries: archaeology, ritual, mythology: Proceedings of the International scientific symposium]. Ufa, pp. 4–40. (In Russ.)
33. Svetogorov R.D., Sulyanov S.N. High-resolution powder diffraction at the XSA beamline of the Kurchatov Synchrotron Radiation Source. IX National Crystal Chemical Conference, Suzdal 2018, conference proceedings.
34. Walter D., Buxbaum G., Laqua W., 2001. The mechanism of the thermal transformation from goethite to hematite. Journal of Thermal Analysis and Calorimetry, vol. 63, no. 3, pp. 733–748.
35. Wojcieszak M., Wadley L., 2019. A Raman micro-spectroscopy study of 77,000 to 71,000 year old ochre processing tools from Sibudu, KwaZulu-Natal, South Africa. Heritage Science, vol. 7, 24.
36. Zhang W.J., Huo C.F., Feng G., Li Y.W., Wang J., Jiao H., 2010. Dehydration of goethite to hematite from molecular dynamics simulation. Journal of Molecular Structure: THEOCHEM, vol. 950, iss. 1–3, pp. 20–26.
37. Zhitenev V.S., 2012. New research on the evidence of artistic activity in the Kapova cave. Kratkie soobshcheniya Instituta arkheologii [Brief Communications of the Institute of Archaeology], 227, pp. 306–314. (In Russ.)