Nonlinear analysis of heart rate variability: possibilities of use in psychological research

Publication type Article
Status Published
Occupation: research assistant, Laboratory of psychophysiology named after V.B. Shvirkov, Institute of Psychology RAS; research assistant, Laboratory of psychophysiological diagnostics of functional states, National Research University Nizhny Novgorod State Universit
Institute of Psychology, Russian Academy of Sciences
National Research University Nizhny Novgorod State University Named after N.I. Lobachevsky
Address: Russian Federation, Moscow
Journal namePsikhologicheskii zhurnal
EditionVolume 43 Issue 2

The question of the patterns and principles of the physiological processes’ interaction (brain and body) in the organization of behavior is still relevant for psychology and psychophysiology. Heart rate variability indicators have been used as reliable and objective indicators of the activity of the autonomic nervous system. It is a relatively easy-to-use technique for data collection, non-invasive, and available for use in experiments on people. Therefore, the number of psychophysiological studies with the analysis of heart rate variability has increased several times over the past two decades. In the published literature, clinical standards and recommendations for the use of this technique and a number of meta-analyses are available. At the same time, there are a number of limitations and corrections in interpretations of heart rate variability measured not in the rest condition. The purpose of the article is to review modern approaches to the heart rate variability methodology in psychological (including social – psychological studies) and psychophysiological (including in the field of systems psychophysiology) experiments, possibilities, and limitations in the interpretation of nonlinear heart rate indicators in determining systems characteristics of the individual's behavior. This work is intended to help researchers planning to use heart rate variability, conducting a psychological experiment.

Keywordsheart rate variability, non-linear dynamics, entropy, fractal temporary structure, neurovisceral integration, system-evolutionary approach
AcknowledgmentThe reported study was funded by RFBR, project № 20-113-50365.
Publication date11.05.2022
Number of characters24238
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 1, views: 327

Readers community rating: votes 0

1. Alexandrov Y.I., Feldman B., Svarnik O.E., Znamenskaya I.I., Kolbeneva M.M., Arutyunova K.A., Krylov A.K., Bulava A.I. Regression I. Experimental approaches to regression // Journal of Analytical Psychology. 2020. V. 65. № 2. P. 345–365.

2. Alexandrov Yu.I., Sozinov A.A., Svarnik O.E., Gorkin A.G., Kuzina E.A., Gavrilov V.V. Neuronal bases of systemic organization of behavior. Advances in Neurobiology // Systems Neuroscience / Cheung-Hoi Yu A., Li L. Springer, Cham, 2018. № 21. P. 1–33.

3. Arutyunova K.R., Bakhchina A.V., Sozinova I.M., Alexandrov Y.I. Complexity of heart rate variability during moral judgement of actions and omissions // Heliyon. 2020. V. 6. №11. e05394. doi:10.1016/j.heliyon.2020.

4. Baevsky R., Chernikova A. Heart rate variability analysis: physiological foundations and main methods // Cardiometry. 2017. P. 66–76. doi: 10.12710/cardiometry.2017.10.6676.

5. Bakhchina A.V., Apanovich V.V., Arutyunova K.R., Alexandrov Y.I. Analytic and Holistic Thinkers: Differences in the Dynamics of Heart Rate Complexity When Solving a Cognitive Task in Field-Dependent and Field-Independent Conditions // Frontiers in Psychology. 2021. V. 26. № 12. 762225. doi: 10.3389/fpsyg.2021.762225.

6. Bakhchina A.V., Arutyunova K.R., Sozinov A.A., Demidovsky A.V., Alexandrov Yu.I. Sample Entropy of the Heart Rate Reflects Properties of the System Organization of Behaviour // Entropy. 2018. V. 20. № 449.

7. Bakhchina A.V., Demidovsky A.V., Alexandrov Yu.I. Correspondence between the heart rate complexity and system characteristics of performed behavior // Psikhologicheskii zhurnal. V. 39 № 5. 2018. P. 46–58. doi:10.31857/S020595920000834-3

8. Cabiddu R., Trimer R., Borghi-Silva A., Migliorini M., Mendes R.G., Oliveira A.D. Are complexity metrics reliable in assessing HRV control in obese patients during sleep? // PLoS One. 2015. V. 10. № 4. e0124458. doi:10.1371/journal.pone.0124458

9. Cheffer A., Savi M.A., Pereira T.L., de Paula A.S. Heart rhythm analysis using a nonlinear dynamics perspective // Applied Mathematical Modelling. 2021. V. 96. P. 152–176.

10. Cornforth D.J., Tarvainen M.P., Jelinek H.F. How to calculate Renyi entropy from heart rate variability, and why it matters for detecting cardiac autonomic neuropathy // Front Biotechnology and Bioengineering. 2014. №. 2. 34. doi:10.3389/fbioe. 2014.00034

11. Costa M., Goldberger A.L., Peng C.K. Multiscale entropy analysis of biological signals // Physical Review. 2005. V. 71. 021906.

12. Costa M.D., Peng C.K., Goldberger A.L. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures // Cardiovasc Eng. 2008. V. 8. № 2. P. 88–93. doi:10.1007/s10558-007-9049-1

13. Delgado-Bonal A., Marshak A. Approximate entropy and sample entropy: a comprehensive tutorial // Entropy. 2019. V. 21. № 6. 541.

14. Dimitriev D.A., Saperova E.V., Dimitriev A. State anxiety and nonlinear dynamics of heart rate variability in students // PLoS ONE. 2016. V. 11. e0146131.

15. Echeverria J., Woolfson M., Crowe J., Hayes-Gill B., Croaker G., Vyas H. Interpretation of heart rate variability via detrended fluctuation analysis and alpha beta filter // Chaos Interdiscip. J. Nonlinear Sci. 2003. № 13. P. 467–475.

16. Ernst G. Heart-Rate Variability—more than heart beats? // Front. Public Health. 2017. V. 5. 240. doi:10.3389/fpubh.2017.00240

17. Ernst G. Hidden Signals — the history and methods of heart rate variability // Frontiers Research Foundation. 2017. V. 5. 265. doi:10.3389/fpubh.2017.00265

18. Faes L., Gómez-Extremera M., Pernice R., Carpena P., Nollo G., Porta A., Bernaola-Galván P. Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019. № 29. 123114.

19. Henriques T., Ribeiro M., Teixeira A., Castro L., Antunes L., Costa-Santos C. Nonlinear methods most applied to heart-rate time series: a review // Entropy. 2020. № 22. 309.

20. Koenig J., Kemp A.H., Beauchaine T.P., Thayer J.F., Kaess M. Depression and resting state heart rate variability in children and adolescents — A systematic review and meta-analysis // Clinical Psychology Review. 2016. № 46. P. 136–150.

21. Laborde S., Mosley E., Thayer J.F. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting // Frontiers in Psychology. 2017. № 8. 213. doi: 10.3389/fpsyg.2017.00213.

22. Leistedt S.J., Linkowski P., Lanquart J.P., Mietus J., Davis R.B., Goldberger, A.L., Costa M.D. Decreased neuroautonomic complexity in men during an acute major depressive episode: Analysis of heart rate dynamics // Translational Psychiatry. 2011. V. 1. e27.

23. Makowski D., Pham T., Lau Z.J., Brammer J.C., Lespinasse F., Pham H., Schölzel C., Chen S.A. NeuroKit2: A Python toolbox for neurophysiological signal processing // Behavior Research Methods. 2021.

24. Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996. 93. 1043–1065.

25. Mayer C.C., Bachler M., Hortenhuber M., Stocker C., Holzinger A., Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data // BMC Bioinformatics. 2014. V. 15. P. 1–11.

26. Mourot L., Bouhaddi M., Gandelin E., Cappelle S., Nguyen N.U., Wolf J.P., Rouillon J.D., Hughson R., Regnard J. Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics // Autonomic Neuroscience. 2007. V. 137. № 2. P. 27–36. doi:10.1016/j.autneu.2007.06.284

27. Nardelli M., Valenza G., Greco A., Lanata A., Scilingo E.P. Recognizing Emotions Induced by Affective Sounds through Heart Rate Variability // IEEE Transactions on Affective Computing. 2015. V. 6. № 4. P. 385–394. doi: 10.1109/TAFFC.2015.2432810

28. Nicolini P., Ciulla M.M., De Asmundis C., Magrini F., Brugada P. The prognostic value of heart rate variability in the elderly, changing the perspective: from sympathovagal balance to chaos theory // Pacing and Clinical Electrophysiology. 2012. V. 35. № 5. P. 622–638. doi: 10.1111/j.1540-8159.2012.03335.x.

29. Peng C.K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos: An Interdisciplinary Journal of Nonlinear Science. № 5. P. 82–87.

30. Penzel T., Kantelhardt J.W., Grote L., Peter J.H., Bunde A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep Apnea // IEEE Transactions on Affective Computing. 2003. № 50. P. 1143–1151.

31. Perkiomaki J.S., Makikallio T.H., Huikuri H.V. Fractal and complexity measures of heart rate variability // Clinical and Experimental Hypertension. 2005. V. 27. № 2. P. 149–158.

32. Pham T., Lau Z.J., Chen S.H.A., Makowski D. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial // Sensors (Basel). 2021. V. 21. № 12. 3998. doi:10.3390/s21123998.

33. Pincus S.M. Approximate entropy as a measure of system complexity // Proceedings of the National Academy of Sciences. 1991. V. 88. № 6. P. 2297-2301. doi:10.1073/pnas.88.6.2297.

34. Porges S.W. The Polyvagal theory: phylogenetic contributions to social behavior // Physiology and behavior. 2003. V. 79. № 3. P. 503–513.

35. Ravelo-García A.G., Navarro-Mesa J.L., Casanova-Blancas U., Martin-Gonzalez S., Quintana-Morales P., Guerra-Moreno I., Canino-Rodríguez J.M., Hernández-Pérez E. Application of the permutation entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection // Entropy. 2015. № 17. P. 914–927.

36. Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy // American Journal of Physiology - Heart and Circulatory Physiology. 2000. № 278. H2039–H2049.

37. Schulz S., Koschke M., Bär K-J., Vossl A. The altered complexity of cardiovascular regulation in depressed patients // Institute of Physics and Engineering in Medicine Physiological Measurement. 2010. V. 31. № 3. P. 303–321.

38. Sen J., McGill D. Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2018. № 28. 072101.

39. Shaffer F., Ginsberg J. An Overview of Heart Rate Variability Metrics and Norms // Frontiers in Public Health. 2017. №5. 258.

40. Smith R., Thayer J.F., Khalsa S.S., Lane R.D. The hierarchical basis of neurovisceral integration // Neuroscience & Biobehavioral Reviews. 2017. № 75. P. 274–296. doi:10.1016/j.neubiorev.2017.02.003

41. Stapelberg N.J.C., Neumann D.L., Shum D.H.K., McConnell H., Hamilton-Craig I. The sensitivity of 38 heart rate variability measures to the addition of artifact in human and artificial 24-hr cardiac recordings // Annals of Noninvasive Electrocardiology. 2018. V. 23. № 1. e12483. doi:10.1111/anec.12483.

42. Thome J., Densmore M., Frewen P.A., McKinnon M.C., Théberge J., Nicholson A.A., Koenig J., Thayer J.F., Lanius R.A. Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder // Human Brain Mapping. 2017. V. 38. № 1. P. 27–40. doi:10.1002/hbm.23340.

43. Tiwari R., Kumar R., Malik S., Raj T., Kumar P. Analysis of heart rate variability and implication of different factors on heart rate variability // Current Cardiology Reviews. 2020. № 31. doi:10.2174/1573403X16999201231203854

44. Wu S.-D., Wu C.-W., Lin S.-G., Lee K.-Y., Peng C.-K. Analysis of complex time series using refined composite multiscale entropy // Physics Letters. 2014. № 378. P. 1369–1374.

45. Yeh R.G., Shieh J.S., Chen G.Y., Kuo C.D. Detrended fluctuation analysis of short-term heart rate variability in late pregnant women // Autonomic Neuroscience. 2009. V. 150 (1-2). P.122–126. doi: 10.1016/j.autneu.2009.05.241.

Система Orphus