Big data analysis in psychology and social sciences: perspective directions of research

Publication type Article
Status Published
Occupation: head of the laboratory of social and economic psychology
Affiliation: Federal State-financed Establishment of Science, Institute of Psychology RAS
Address: Moscow, Yaroslavskaya str., 13
Occupation: scientific supervisor of the Institute of Psychology of the Russian Academy of Sciences
Affiliation: Institute of Psychology RAS
Address: Russian Federation
Journal namePsikhologicheskii zhurnal
EditionVolume 40 issue 6

The consequences of Big Data revolutionfor psychology and social sciences are analyzed.The article presents an overview of the four types of psychological research based on the Big Data analysis: secondary data analysis; crowdsourcing projects and matching of personal digital footprints of social network users with data of psychometric questionnaires; research of psychological phenomena based on network analysis, natural language processing and machine learning without surveys; natural experiments and data gathering by portable gadgets. A special attention is paid to psychological profiling of personality by digital footprints. The perspective directions for further research of dynamics in socio-psychological phenomena at the personal, interpersonal, group, and macro-social levels with applying computer linguistic and visual data analysis are proposed. The psychological and social risks of Big Data based technologies adoption in the everyday life of society are discussed.

KeywordsBig Data, digital footprints, visual data, social networks, group dynamics, macro-psychological indicators, risks.
AcknowledgmentThe research was supported by RSF grant №18-18-00439
Publication date21.11.2019
Number of characters35928
100 rub.
When subscribing to an article or issue, the user can download PDF, evaluate the publication or contact the author. Need to register.

Number of purchasers: 6, views: 3628

Readers community rating: votes 0

1. Agadullina E.R. Pol'zovateli social'nyh setej: sovremennye issledovanija // Sovremennaja zarubezhnaja psihologija. 2015. V. 4. № 3. P. 36–46. (in Russian)

2. Berrouz R., Sevidzh M. Posle krizisa? Big Data I metodologicheskie vyzovyj empiricheskoj sociologii // Sociologicheskie issledovanija. 2016. № 3 (383). P. 28–35. (in Russian)

3. Vojskunskij A.E. Psihologija i iskusstvennyj intellekt: novyjj etap starogo vzaimodejstvija // Psihologija cheloveka kak sub#ekta poznanija, obshhenija I dejatel'nosti / Eds. V.V. Znakov, A.L. Zhuravljov. Moscow: Izd-vo “Institut psihologii RAN”, 2018. P. 2094–2101. (in Russian)

4. Zhuravlev A.L., Nestik T.A., Jurevich A.V. Prognoz razvitija psihologicheskoj nauki i praktiki k 2030 g. // Psikhologicheskii zhurnal. 2016. V. 37. № 5. P. 45–64. (in Russian)

5. Zhuravlev A.L., Sosnin V.A., Kitova D.A., Nestik T.A., Jurevich A.V. Massovoe soznanie I povedenie: tendencii social'no-psihologicheskih issledovanij. Moscow: Izd-vo “Institut psihologii RAN”, 2017. (in Russian)

6. Zuev K.B., Nestik T.A. Osnovnye napravlenija razvitija psihologicheskih issledovanij: bibliometricheskij analiz po dannym Web of Science I statistiki poiskovyh zaprosov Google // Psihologicheskoe znanie: Sovremennoe sostojanie i perspektivy razvitija / Eds. A.L. Zhuravlev, A.V. Jurevich. Moscow: Izd-vo “Institut psihologii RAN”, 2018. P. 671–697. (in Russian)

7. Korytnikova N.V. Online Big Data kak istochnik analiticheskoj informacii v online-issledovanijah // Sociologicheskie issledovanija. 2015. № 8 (376). P. 14–24. (in Russian)

8. Ledovaja Ja.A., Tihonov R.V., Bogoljubova O.N. Social'nye seti kak novaja sreda dlja mezhdisciplinarnyh issledovaniĭ povedenija cheloveka // Vestnik Sankt-Peterburgskogo universiteta. Serija 16. Psihologija. Pedagogika. 2017. V. 7(3). P. 193–210. (in Russian)

9. Ledovaja Ja.A., Tihonov R.V., Bogoljubova O.N., Ivanov V.Ju., Jaminov B.R. Organizacionno-metodicheskie voprosy sbora dannyh v onlajn-issledovanii povedenija pol'zovatelej social'noj seti “Fejsbuk” iz Rossii i SShA // Vestnik Sankt-Peterburgskogo universiteta. Serija 16. Psihologija. Pedagogika. 2017. V. 7(4). P. 308–327. (data obrashhenija: 12.01.2017). (in Russian)

10. Makropsihologija sovremennogo rossijskogo obshhestva / Eds. A.L. Zhuravlev, A.V. Jurevich. Moscow: Izd-vo “Institut psihologii RAN”, 2009. (in Russian)

11. Miheev E. A., Nestik T. A. Dezinformacija v social'nyh setjah: sostojanie I perspektivy psihologicheskih issledovanij // Fundamental'nye I prikladnye issledovanija sovremennoj psihologii: rezul'taty i perspektivy razvitija / Eds. A.L. Zhuravljov, V.A. Kol'cova. Moscow: Izd-vo “Institut psihologii RAN”, 2017. P. 2021–2030. (in Russian)

12. Nestik T.A. Razvitie cifrovyh tehnologij I budushhee psihologii // Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Serija: Psihologicheskie nauki. 2017. № 3. P. 6–15. (in Russian)

13. Pogorskij Je.K. Osobennosti cifrovyh gumanitarnyh nauk // Znanie. Ponimanie. Umenie. 2014. № 5. URL: Pogorskiy_Digital-Humanities / (data obrashhenija: 12.01.2017). (in Russian)

14. Smirnov I.V. Vvedenie v analiz estestvennyh jazykov: uchebno-metodicheskoe posobie. Moscow: Izd-vo RUDN, 2014. (in Russian)

15. Soldatova G.U., Rasskazova E.I., Nestik T.A. Cifrovoe pokolenie Rossii: kompetentnost' i bezopasnost'. Moscow: Smysl, 2017. (in Russian)

16. Tishhenko V.I. Informatika soobshhestv: Protivorechija stanovlenija // Social'nye seti i virtual'nye setevye soobshhestva / Eds. L. N. Verchenov, D.V. Efremenko, V.I. Tishhenko. Moscow, 2013. P. 11–18. (in Russian)

17. Tolstova Ju. N. Sociologija i komp'juternye tehnologii // Sociologicheskie issledovanija. 2015. № 8 (376). P. 3–13. (in Russian)

18. Al-Mosaiwi M., Johnstone T.In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation // Clinical Psychological Science January 5, 2018 URL: (дата обращения: 1.03.2017).

19. Azucar D., Marengo D., Settanni M. Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis // Personality and Individual Differences. 2018. V. 124. P. 150–159.

20. Bessi A. Personality traits and echo chambers on Facebook // Computers in Human Behavior. 2016. V. 65. P. 319–324.

21. Burnap P., Williams M.L., Sloan L. Tweeting the terror: Modelling the social media reaction to the Woolwich terrorist attack // Social Network Analysis and Mining. 2014. V. 4(1). P. 1–14.

22. Candia C., Jara-Figueroa C., Rodriguez-Sickert C., Barabási A.-L.,Hidalgo C.A. The universal decay of collective memory and attention // Nature Human Behaviour. 2019. V. 3. P. 82–91.

23. Crump M.J.C., McDonnell J.V., Gureckis T.M. Evaluating Amazon’s Mechanical Turk as a Tool for Experimental Behavioral Research // PLoS ONE. 2013. 8(3):e57410.

24. Deign J. Big data dating: romance goes digital // The Network. Cisco's Technology News Site. September 13, 2017. URL: (дата обращения: 1.03.2017).

25. Guzzo R.A., Fink A.A., King E., Tonidandel S., Landis R.S. Big data recommendations for industrial–organizational psychology // Industrial and Organizational Psychology. 2015. V. 8(4). P. 491–508.

26. Jones M.N. Developing cognitive theory by mining large-scale naturalistic data // Big Data in Cognitive Science. Frontiers of Cognitive Psychology / Ed. Michael N. Jones. N.Y.: Routledge, 2017. P. 1–12.

27. Karlsson Linner R., Biroli P., Kong E., […] Beauchamp J.P. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences // Nature Genetics. 2019. V. 51(2). P. 245–257.

28. Kosinski M. Computational Psychology // Advanced social psychology: the state of the science. 2nd Ed. / Eds. E.J. Finkel and R.F. Baumeister. Oxford: Oxford University Press, 2019. P. 499–523.

29. Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital records of human behavior // Proceedings of the National Academy of Sciences (PNAS). 2013. V. 110. N 15. P. 5802–5805.

30. Kosinski M., Wang Y., Lakkaraju H., Leskovec J. Mining Big Data to Extract Patterns and Predict Real-Life Outcomes // Big Data in Psychology. Special issue of Psychological Methods. 2016. V. 21. N. 4. P. 493–506.

31. Kramer A.D., Guillory J.E., Hancock J.T. Experimental evidence of massive-scale emotional contagion through social networks // Proceedings of the National Academy of Sciences. 2014. V. 111(24). P. 8780–8790.

32. Lambiotte R., Kosinski M. Tracking the Digital Footprints of Personality // Proceedings of the Institute of Electrical and Electronics Engineers (IEEE). 2014. V. 102. N. 12. P. 1934–1939.

33. Manovich L. Automating Aesthetics: Artificial Intelligence and Image Culture.2017. URL: (дата обращения: 01.03.2017).

34. Mitroff S.R., Biggs A.T., Adamo S.H., Dowd E.W., Winkle J., Clark K. What can 1 billion trials tell us about visual search? // Journal of Experimental Psychology: Human Perception and Performance. 2015. V. 41. 1–5.

35. MolinerP. Psychologie sociale de l'image. Grenoble: Presses Universitaires de Grenoble, 2016.

36. Monteith S., Glenn T., Geddes J., Bauer M. Big data are coming to psychiatry: a general introduction // International Journal of Bipolar Disorders. 2015. V. 3:21.

37. Obschonka M., Stuetzer M., Rentfrow P.J., Shaw-Taylor L., Satchell M., Silbereisen R.K., Potter J., Gosling S.D. In the Shadow of Coal: How Large-Scale Industries Contributed to Present-Day Regional Differences in Personality and Well-Being // Journal of Personality and Social Psychology. 2018. V. 115(5). P. 903–927.

38. Pettit M. Historical time in the age of Big Data: Cultural psychology, historical change, and the Google Books Ngram Viewer // History of Psychology. 2016. V. 19(2). P. 141–153.

39. Putka D.J., Oswald F.L. Implications of the Big Data movement for the advancement of IO science and practice // Big data at work: The data science revolution and organizational psychology / Eds. Tonidandel S., King E., Cortina J. M.. New York, NY: Routledge, 2015. P. 181–212.

40. Rudder C. Dataclysm: Who We Are (When We Think No One's Looking). N.Y.: Crown, 2014.

41. Salganik M.J. Bit by Bit: Social Research in the Digital Age. Princeton & Oxford: Princeton University Press, 2018.

42. Spitzberg B.H. Toward a model of meme diffusion (M 3 D) // Communication Theory. 2014. V. 24(3).P. 311–339.

43. Stewart R., Davis K. ‘Big Data’ in mental health research: current status and emerging possibilities // Social Psychiatry and Psychiatric Epidemiology. 2016. Т. 51. № 8. С. 1055–1072.

44. Vosoughi S., Roy D., Aral S. The spread of true and false news online // Science. 2018. V. 359. N. 6380. P.1146–1151.

Система Orphus