Analytical Properties of Shannon’s Capacity of Arbitrarily Varying Channels under List Decoding: Super-Additivity and Discontinuity Behavior

 
PIIS055529230001282-4-1
DOI10.31857/S055529230001282-4
Publication type Article
Status Published
Authors
Affiliation:
Address:
Affiliation:
Address: United States
Affiliation:
Address: Germany
Journal nameProblemy peredachi informatsii
EditionVolume 54 Issue 3
Pages3-35
Abstract

               

Keywords
Received12.10.2018
Publication date12.10.2018
Number of characters1345
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1160

Readers community rating: votes 0

1. Boche H., Schaefer R.F., Poor H.V. Characterization of Super-additivity and Discontinuity. Behavior of the Capacity of Arbitrarily Varying Channels under List Decoding // Proc. 2017 IEEE Int. Sympos. on Information Theory (ISIT’2017). Aachen, Germany. June 25–30, 2017. P. 2820–2824.

2. Shannon C.E. A Mathematical Theory of Communication // Bell Syst. Tech. J. 1948. V. 27. № 3. P. 379–423.

3. Shannon C.E. The Zero Error Capacity of a Noisy Channel // IRE Trans. Inform. Theory. 1956. V. 2. № 3. P. 8–19.

4. Lovász L. On the Shannon Capacity of a Graph // IEEE Trans. Inform. Theory. 1979. V. 25. № 1. P. 1–7.

5. Haemers W. On Some Problems of Lovász Concerning the Shannon Capacity of a Graph // IEEE Trans. Inform. Theory. 1979. V. 25. № 2. P. 231–232.

6. Alon N. The Shannon Capacity of a Union // Combinatorica. 1998. V. 18. № 3. P. 301–310.

7. Keevash P., Long E. On the Normalized Shannon Capacity of a Union // Combin. Probab. Comput. 2016. V. 25. № 5. P. 766–767.

8. Ahlswede R. Elimination of Correlation in Random Codes for Arbitrarily Varying Channels // Z. Wahrsch. Verw. Gebiete. 1978. V. 44. № 2. P. 159–175.

9. Blackwell D., Breiman L., Thomasian A.J. The Capacities of Certain Channel Classes under Random Coding // Ann. Math. Statist. 1960. V. 31. № 3. P. 558–567.

10. Csiszár I., Narayan P. The Capacity of the Arbitrarily Varying Channel Revisited: Positivity, Constraints // IEEE Trans. Inform. Theory. 1988. V. 34. № 2. P. 181–193.

11. Blinovskij V.M., Narajan P., Pinsker M.S. Propusknaya sposobnost' proizvol'no menyayuschegosya kanala pri spisochnom dekodirovanii // Probl. peredachi inform. 1995. T. 31. № 2. S. 3–19.

12. Hughes B.L. The Smallest List for the Arbitrarily Varying Channel // IEEE Trans. Inform. Theory. 1997. V. 43. № 3. P. 803–815.

13. Csiszár I., Narayan P. Arbitrarily Varying Channels with Constrained Inputs and States // IEEE Trans. Inform. Theory. 1988. V. 34. № 1. P. 27–34.

14. Sarwate A.D., Gastpar M. List-Decoding for the Arbitrarily Varying Channel under State. Constraints // IEEE Trans. Inform. Theory. V. 58. 2012. № 3. P. 1372–1384.

15. Ahlswede R. A Note on the Existence of the Weak Capacity for Channels with Arbitrarily. Varying Channel Probability Functions and Its Relation to Shannon’s Zero Error Capacity // Ann. Math. Statist. 1970. V. 41. № 3. P. 1027–1033.

16. Schaefer R.F., Boche H., Poor H.V. Super-Activation as a Unique Feature of Secure Communication in Malicious Environments // Information. 2016. V. 7. № 2. Article 24 (21 pp.).

17. MolavianJazi E., Bloch M., Laneman J.N. Arbitrary Jamming Can Preclude Secure Communication // Proc. 47th Annual Allerton Conf. on Communication, Control, and Computing. Monticello, IL, USA. Sep. 30 – Oct. 2, 2009. P. 1069–1075.

18. Bjelaković I., Boche H., Sommerfeld J. Capacity Results for Arbitrarily Varying Wiretap Channels // Information Theory, Combinatorics, and Search Theory. Lect. Notes Comp. Sci. V. 7777. Berlin, Heidelberg: Springer-Verlag, 2013. P. 123–144.

19. Boche H., Schaefer R.F. Capacity Results and Super-Activation for Wiretap Channels with Active Wiretappers // IEEE Trans. Inf. Forensics Secur. 2013. V. 8. № 9. P. 1482–1496.

20. Boche H., Schaefer R.F., Poor H.V. On the Continuity of the Secrecy Capacity of Compound and Arbitrarily Varying Wiretap Channels // IEEE Trans. Inf. Forensics Secur. 2015. V. 10. № 12. P. 2531–2546.

21. Wiese M., Nötzel J., Boche H. A Channel under Simultaneous Jamming and Eavesdropping Attack—Correlated Random Coding Capacities under Strong Secrecy Criteria // IEEE Trans. Inform. Theory. 2016. V. 62. № 7. P. 3844–3862.

22. Nötzel J., Wiese M., Boche H. The Arbitrarily Varying Wiretap Channel—Secret Randomness, Stability, and Super-Activation // IEEE Trans. Inform. Theory. 2016. V. 62. № 6. P. 3504–3531.

23. Schaefer R.F., Boche H., Poor H.V. Arbitrarily Varying Channels—A Model for Robust Communication in the Presence of Unknown Interference // Communications in Interference Limited Networks. Cham, Switzerland: Springer, 2016. P. 259–283.

24. Boche H., Nötzel J. Positivity, Discontinuity, Finite Resources, and Nonzero Error for Arbitrarily Varying Quantum Channels // J. Math. Phys. 2014. V. 55. № 12. P. 122201 (20 pp.).

25. Arendt C., Nötzel J., Boche H. Super-Activation of the Composite Independent Arbitrarily Varying Channel under State Constraints // Proc. IEEE Global Communications Conf. (GLOBECOM’2017). Singapore. Dec. 4–8, 2017. P. 1–6.

26. Mansour A.S., Boche H., Schaefer R.F. The Secrecy Capacity of the Arbitrarily Varying Wiretap Channel under List Decoding // Adv. Math. Commun. (submitted, 2017).

27. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge, UK: Cambridge Univ. Press, 2010.

28. Boche H., Schaefer R.F., Poor H.V. Identification over Channels with Feedback: Discontinuity Behavior and Super-Activation // Proc. 2018 IEEE Int. Sympos. on Information Theory (ISIT’2018). Vail, CO, USA. June 17–22, 2018. P. 256–260.

29. Boche H., Schaefer R.F., Poor H.V. Identification Capacity of Channels with Feedback: Discontinuity Behavior, Super-Activation, and Turing Computability // IEEE Trans. Inform. Theory (submitted, 2018).

30. Csiszár I., Körner J. Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge, UK: Cambridge Univ. Press, 2011.

31. Wolfowitz J. Coding Theorems of Information Theory. Berlin, Heidelberg: Springer-Verlag, 1978.

32. Ahlswede R. Transmitting and Gaining Data: Rudolf Ahlswede’s Lectures on Information Theory 2. New York: Springer, 2015.

33. Boche H., Schaefer R.F., Poor H.V. Undecidability of Strong Converses for Finite Compound Channels (in preparation).

34. Ahlswede R., Dueck G. Identification via Channels // IEEE Trans. Inform. Theory. 1989. V. 35. № 1. P. 15–29.

35. Boche H., Deppe C. Secure Identification for Wiretap Channels; Robustness, Super-Additivity and Continuity // IEEE Trans. Inf. Forensics Secur. 2018. V. 13. № 7. P. 1641–1655.

36. Boche H., Deppe C. Secure Identification under Jamming Attacks // Proc. 9th IEEE Int. Workshop on Information Forensics and Security (WIFS’2017). Rennes, France. Dec. 4–7, 2017. P. 1–6.

37. Boche H., Deppe C., Winter A. Secure and Robust Identification via Classical-Quantum Channels // arXiv:1801.09967 [quant-ph], 2018.

Система Orphus

Loading...
Up