Co3o4-based metal affinity sorbent: study of surface and sorption properties

 
PIIS086858860001098-9-1
DOI10.31857/S086858860001098-9
Publication type Article
Status Published
Authors
Affiliation: Institute of Toxicology of FMBA
Address: Russian Federation, Saint-Petersburg
Affiliation: Institute of Toxicology of FMBA,
Address: Russian Federation
Affiliation: Institute of Toxicology of FMBA
Address: Russian Federation
Affiliation: Institute for Analytical Instrumentation of RAS
Address: Russian Federation
Affiliation:
Institute of Toxicology of FMBA
Institute for Analytical Instrumentation of RAS
Address: Russian Federation
Journal nameNauchnoe priborostroenie
EditionVolume 28 Issue 3
Pages63-71
Abstract

The work is devoted to the studied of cobalt (III) oxide particles and determination of their sorption properties to diclofenac in water. The specific surface area of particles was 26 m2/g, the pore volume was  0.056 cm3/g. The sorption capacity for diclofenac was 2.1 ± 0.1 μg/mg and recovery reached 98 % for ammonia-acetonitrile mixture as eluent.

Keywords metal affinity chromatography, sorbents, cobalt oxide (III), diclofenac
Received08.10.2018
Publication date10.10.2018
Number of characters324
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1341

Readers community rating: votes 0

1. Pharmaceuticals in the environment — result of an EEA workshop. Technical report No 1/2010. URL: https://publications.europa.eu/en/publication-detail/-/publication/29affe43-b703-458b-80ca-1af782dc8198/language-en.

2. Barenboim G.M., Chiganova M.A. Zagryaznenie prirod-nyh vod lekarstvami [Drug pollution of the natural wa-ters]. Moscow, Nauka Publ., 2015, 283 p. (In Russ.).

3. Aus der Beek T., Weber F.-A., Bergmann A., Hickmann S., Ebert I., Hein A. et al. Pharmaceuticals in the environ-ment – global occurrences and perspectives. Environ Tox-icol Chem., 2016, vol. 35, no. 4, pp. 823–835

4. Vieno N., Sillanpää M. Fate of diclofenac in municipal wastewater treatment plant — a review. Environment In-ternational, 2014, vol. 69, pp. 28–39.

5. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority sub-stances in the field of water policy. URL: http://data.europa.eu/eli/dir/2013/39/oj (accessed 15 Feb-ruary 2018).

6. Keltsieva O.A., Gladilovich V.D., Podolskaya E.P. [Im-mobilized metal ion affinity chromatography (IMAC). Principle and applications]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 74–85. URL: http://213.170.69.26/en/mag/2013/abst1.php#abst9. (In Russ.).

7. Cheung R.C., Wong J.H., Ng T.B. Immobilized metal ion affinity chromatography: a review on its applications. Appl. Microbiol. Biotechnol., 2012, vol. 96, no. 6, pp. 1411–1420. Doi: 10.1007/s00253-012-4507-0.

8. Feng S., Ye M., Zhou H., Jiang X., Jiang X., Zou H. et al. Immobilized zirconium affinity chromatography for spe-cific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics., 2007, vol. 6, no. 9,

9. Tsai C.F., Hsu C.C., Hung J.N., Wang Y.T., Choong W.K., Zeng M.Y. et al. Sequential phosphopro-teomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal. Chem., 2014, vol. 86, no. 1, pp. 685–693.

10. Lai A.C., Tsai C.F., Hsu C.C., Sun Y.N., Chen Y.J. Com-plementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun. Mass Spectrom., 2012, vol. 26, no. 18, pp. 2186–2194.

11. Yu Z., Han G., Sun S., Jiang X., Chen R., Wang F. et al. Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides. Analytica Chimica Acta, 2009, vol. 636, no. 1, pp. 34–41. Doi: 10.1016/j.aca.2009.01.033.

12. Nelson C.A., Szczhech J.R., Xu Q., Lawrence M.J., Jin S., Ge Y. Mesoporous zirconium oxide nanomaterials effec-tively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem. Commun. (Camb.), 2009, vol. 43, pp. 6607–6609. Doi: 10.1039/b908788e.

13. Han L., Shan Z., Chen D., Yu X., Yang P., Tu B. et al. Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J. Colloid. Interface Sci., 2008, vol. 318, no. 2,315–321.

14. Choi S., Kim J., Cho K., Park G., Yoon J.H., Park S. et al. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectro-metry. Rapid Commun. Mass Spectrom., 2010, vol. 24, 1467–1474.

15. Kurdyukov D., Chernova E., Russkikh Y., Eurov D., Sokolov V., Bykova A. et al. Ni-functionalized submicronmesoporous silica particles as a sorbent for metal affinity chromatography. J. Chromatogr. A, 2017, vol. 1513, pp. 140–148. Doi: 10.1016/j.chroma.2017.07.043.

16. Pearson R. Hard and soft acids and bases. J. Am. Chem.

17. Kolonitskiy P.D., Shustov V.Е., Mozgushin I.A., Podols-kaya E.P. [Microwave-assisted synthesis of NiO particles, characterization its surface properties]. Nauchnoe Pribo-rostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 102–107. (In Russ.).

18. Brunauer S., Emmett P., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.

19. Barrett E., Joyner L., Halenda P. The determination of pore volume and area distributions in porous substances. I Computations from nitrogen isotherms. J. Am. Chem. Soc., 1951, vol. 73, no. 1, pp. 373–380.

Система Orphus

Loading...
Up