Металл-аффинный сорбент на основе оксида кобальта: исследование поверхностных и сорбционных свойств

 
Код статьиS086858860001098-9-1
DOI10.31857/S086858860001098-9
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Институт токсикологии ФМБА
Адрес: Российская Федерация, Санкт-Петербург
Аффилиация: Институт токсикологии ФМБА
Адрес: Российская Федерация
Аффилиация: Институт токсикологии ФМБА
Адрес: Российская Федерация
Аффилиация: Институт аналитического приборостроения РАН
Адрес: Российская Федерация
Аффилиация:
Институт токсикологии ФМБА
Институт аналитического приборостроения РАН
Адрес: Российская Федерация
Название журналаНаучное приборостроение
ВыпускТом 28 Номер 3
Страницы63-71
Аннотация

На примере выделения лекарственного препарата диклофенак из воды пока-зана возможность использования наночастиц в качестве металл-аффинного сорбента. Сорбционная емкость по диклофенаку составила 2.1±0.1 мкг/мг, а применение в качестве элюента смеси аммиак—ацетонитрил по-зволило достигнуть степени экстракции до 98 %.

Ключевые словаметалл-аффинная хроматография, сорбенты, оксид кобальта (III), диклофенак
Получено08.10.2018
Дата публикации10.10.2018
Кол-во символов324
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1363

Оценка читателей: голосов 0

1. Pharmaceuticals in the environment — result of an EEA workshop. Technical report No 1/2010. URL: https://publications.europa.eu/en/publication-detail//publication/29affe43-b703-458b-80ca1af782dc8198/language-en.

2. Баренбойм Г.М., Чиганова М.А. Загрязнение природных вод лекарствами. М.: Наука, 2015. 283 с

3. Aus der Beek T., Weber F.-A., Bergmann A., Hickmann S., Ebert I., Hein A. et al. Pharmaceuticals in the environment – global occurrences and perspectives // Environ Toxicol Chem. 2016. Vol. 35, no. 4. P. 823–835.

4. Vieno N., Sillanpää M. Fate of diclofenac in municipal wastewater treatment plant — a review // Environment International. 2014. Vol. 69. P. 28–39.

5. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. URL: http://data.europa.eu/eli/dir/2013/39/oj (accessed 15 February 2018).

6. Кельциева О.А., Гладилович В.Д., Подольская Е.П. Металл-аффинная хроматография. Основы и применение // Научное приборостроение. 2013. Т. 23, № 1. С. 74–85. URL: http://213.170.69.26/mag/2013/abst1.php#abst9.

7. Cheung R.C., Wong J.H., Ng T.B. Immobilized metal ion affinity chromatography: a review on its applications // Appl. Microbiol. Biotechnol. 2012. Vol. 96, no. 6. P. 1411–1420.

8. Feng S., Ye M., Zhou H., Jiang X., Jiang X., Zou H. et al. Immobilized zirconium affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis // Mol. Cell. Proteomics. 2007. Vol. 6, no. 9. P. 1656–1665.

9. Tsai C.F., Hsu C.C., Hung J.N., Wang Y.T., Choong W.K., Zeng M.Y. et al. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography // Anal. Chem. 2014. Vol. 86, no. 1. P. 685–693.

10. Lai A.C., Tsai C.F., Hsu C.C., Sun Y.N., Chen Y.J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides // Rapid Commun. Mass Spectrom. 2012. Vol. 26, no. 18. P. 2186–2194.

11. Yu Z., Han G., Sun S., Jiang X., Chen R., Wang F. et al. Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides // Analytica Chimica Acta. 2009. Vol. 636, no. 1. P. 34–41.

12. Nelson C.A., Szczhech J.R., Xu Q., Lawrence M.J., Jin S., Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometrybased phosphoproteomics // Chem. Commun. (Camb.) 2009. Vol. 43. P. 6607–6609.

13. Han L., Shan Z., Chen D., Yu X., Yang P., Tu B. et al. Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis // J. Colloid. Interface Sci. 2008. Vol. 318, no. 2. P. 315– 321.

14. Choi S., Kim J., Cho K., Park G., Yoon J.H., Park S. et al. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry // Rapid Commun. Mass Spectrom. 2010. Vol. 24. P. 1467–1474.

15. Kurdyukov D., Chernova E., Russkikh Y., Eurov D., Sokolov V., Bykova A. et al. Ni-functionalized submicronmesoporous silica particles as a sorbent for metal affinity chromatography // J. Chromatogr. A. 2017. Vol. 1513. P. 140–148.

16. Pearson R. Hard and soft acids and bases // J. Am. Chem. Soc. 1963. Vol. 85, no. 22. P. 3533–3539.

17. Колоницкий П.Д., Шустов В.Э., Мозгушин И.А., Подольская Е.П. Синтез оксида никеля методом микроволнового синтеза и исследование его поверхностных свойств // Научное приборостроение. 2015. Т. 25, № 2. С. 102–107. URL: http://213.170.69.26/mag/2015/abst2.php#abst10.

18. Brunauer S., Emmett P., Teller E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. Vol. 60, no. 2. P. 309–319.

19. Barrett E., Joyner L., Halenda P. The determination of pore volume and area distributions in porous substances. I Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. Vol. 73, no. 1. P. 373–380.

Система Orphus

Загрузка...
Вверх