Experimental study of the nonstationarity of the interaction of a shock wave with a boundary layer

 
PIIS056852810002307-8-1
DOI10.31857/S056852810002307-8
Publication type Article
Status Published
Authors
Affiliation: National University of Defense Technology, College of Aeronautics and Astronautics
Address: China
Affiliation: National University of Defense Technology, College of Aeronautics and Astronautics
Address: China
Affiliation: National University of Defense Technology, College of Aeronautics and Astronautics
Address: China
Affiliation: National University of Defense Technology, College of Aeronautics and Astronautics
Address: China
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza
EditionIssue 6
Pages105-115
Abstract

  

Keywords
Received15.12.2018
Publication date15.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1108

Readers community rating: votes 0

1. Kistler A. L. Fluctuating wall pressure under a separated supersonic flow // J. Acoust. Soc. Am. 1964. V. 36. P. 543.

2. Dolling D. S., Or C. T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows // Exp. Fluids. 1985. V. 32. P. 24.

3. Andreopoulos J., Muck K. C. Some new aspects of the shock-wave/boundary-layer interaction in compressionramp flows // J. Fluid Mech. 2006. V. 180. P. 405.

4. Ringuette M. J., Bookey P., Wyckham C., Smits A. J. Experimental study of a Mach 3 compression ramp interaction at Req = 2400 // AIAA J. 2009. V. 47. P. 373.

5. Clemens N. T., Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions // Annu. Rev. Fluid Mech. 2014. V. 46. P. 469.

6. Wu P., Lempert W. R., Miles R. B. Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction // AIAA J. 2000. V. 38. P. 672.

7. Priebe S., Martn M. P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction // J. Fluid Mech. 2012. V. 699. P. 1.

8. Guiho F., Alizard F., Robinet J. C. Instabilities in oblique shock wave/laminar boundary-layer interactions // J. Fluid Mech. 2016. V. 789. P. 1.

9. Sansica A., Sandham N. D., Hu Z. W. Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble // J. Fluid Mech. 2016. V. 798. P. 5.

10. Chen F. J., Malik M. R., Beckwith I. E. Boundary-layer transition on a cone and flat plate at Mach 3.5 // AIAA J. 1989. V. 27. P. 687.

11. Weiss J., Chokani N. Effect of freestream noise on shock-wave/turbulent-boundary layer interactions // AIAA J. 1997. V. 45. P. 2352.

12. Schneider S. P., Haven C. E. Quiet-flow ludwieg tube for high-speed transition research // AIAA J. 1995. V. 33. P. 688.

13. Zhao Y. X., Yi S. H., Tian L. F., Cheng Z. Y. Supersonic flow imaging via nanoparticles // Sci. China. Ser. E: Technol. Sci. 2009. V. 52. P. 3640.

14. Yi S., He L., Zhao Y., Tian L., Cheng Z. A flow control study of a supersonic mixing layer via NPLS // Sci. China. Ser. G: Phys., Mech. Astron. 2009. V. 52. P. 2001.

15. He L., Yi S. H., Zhao Y. X., Tian L. F., Chen Z. Visualization of coherent structures in a supersonic flat-plate boundary layer // Chin. Sci. Bull. 2011. V. 56. P. 489.

16. Dolling D. S., Murphy M. T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield // AIAA J. 1983. V. 21. P. 1628.

17. Kimmel R. L., Kendall J. M. Nonlinear disturbances in a hypersonic laminar boundary layer // 29th Aerospace Sciences Meeting, Reno, NV, 1991.

18. Chokani N., Norris J. Nonlinear interactions in a hypersonic boundary layer // 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002.

Система Orphus

Loading...
Up