Spectra and Energy Fluxes in the Dissipative Interval of Turbulent and Laminar Flows

 
PIIS056852810001803-4-1
DOI10.31857/S056852810002311-3
Publication type Article
Status Published
Authors
Affiliation: Indian Institutes of Technology
Address: Kanpur, India
Affiliation: Indian Institutes of Technology
Address: Kanpur, India
Affiliation: Indian Institutes of Technology
Address: Kanpur, India
Affiliation: Indian Institutes of Technology
Address: Kanpur, India
Affiliation: The Indian Institutes of Technology
Address: Kanpur, India
Affiliation: King Abdullah University of Science and Technology
Address: Tuval, Kingdom of Saudi Arabia
Affiliation: Institute of Continuous Media Mechanics UB RAS
Address: Russian Federation,
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza
EditionIssue 6
Pages142-155
Abstract

    

Keywords
Received17.10.2018
Publication date15.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 875

Readers community rating: votes 0

1. Kolmogorov A. N. Lokal'naya struktura turbulentnosti v neszhimaemoj vyazkoj zhidkosti pri ochen' bol'shikh chislakh Rejnol'dsa // Dokl. AN SSSR. 1941. T. 30. № 4. S. 299–303.

2. Frisch U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press, 1995.

3. McComb W. D. The Physics of Fluid Turbulence. Oxford Engineering Science Series. Oxford: Clarendon Press, 1990.

4. Davidson P. A. Turbulence: An Introduction for Scientists and Engineers. Oxford: Oxford University Press, 2004.

5. Ishihara T., Gotoh T., Kaneda Y. Study of high-Reynolds number isotropic turbulence by direct numerical simulation // Annu. Rev. Fluid Mech. 2009. V. 41(1). P. 165–180.

6. Leslie D. C. Developments in the Theory of Turbulence. Oxford: Clarendon Press, 1973.

7. Lesieur M. Turbulence in Fluids. Dordrecht: Springer-Verlag, 2008.

8. Pope S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2000.

9. Pao Y. H. Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers // Phys. Fluids. 1965. V. 8(6). P. 1063.

10. Martnez D. O., Chen S., Doolen G. D., Kraichnan R. H., Wang L. P., Zhou Y., Energy spectrum in the dissipation range of fluid turbulence // J. Plasma Phys. 1997. V. 57(1). P. 195–201.

11. Saddoughi S. G., Veeravalli S. V. Local isotropy in turbulent boundary layers at high Reynolds number // J. Fluid Mech. 1994. V. 268. P. 333–372.

12. Grant H. L., Stewart R. W., Moilliet A. Turbulence spectra from a tidal channel // J. Fluid Mech. 1962. V. 12(02). P. 241–268.

13. Ishihara T., Kaneda Y., Yokokawa M., Itakura K., Uno A. Energy Spectrum in the Near Dissipation Range of High Resolution Direct Numerical Simulation of Turbulence // J. Phys. Soc. Jpn. 2005. V. 74(5). P. 1464–1471.

14. Lautrup B. Physics of Continuous Matter, Second Edition: Exotic and Everyday Phenomena in the Macroscopic World. Boca Raton, FL: CRC Press, 2011, 2nd ed.

15. Verma M. K., Kumar A., Pandey A. Phenomenology of buoyancy-driven turbulence: recent results // New J. Phys. 2017. V. 19. P. 025012.

16. Gotoh T., Yeung P. K. Passive scalar transport turbulence: a computational perspective // in: Davidson P. A., Kaneda Y., Sreenivasan K. R. (Eds.) Ten Chapters in Turbulence. P. 87–131, Cambridge: Cambridge University Press, 2013.

17. Batchelor G. K., Howells I. D., Townsend A. A. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity // J. Fluid Mech. 1959. V. 5. P. 134–139.

18. Kraichnan R. H., Small-scale structure of a scalar field convected by turbulence // Phys. Fluids. 1968. V. 11. P. 945–953.

19. Linkmann M. F., Morozov A. N. Sudden relaminarization and lifetimes in forced isotropic turbulence // Phys. Rev. Lett. 2015. V. 115(13). P. 134502.

20. Verma M. K. Anisotropy in quasi-static magnetohydrodynamic turbulence // Rep. Prog. Phys. 2017. V. 80(8). P. 087001.

21. Domaradzki J. A., Rogallo R. S. Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence // Phys. Fluids. A. 1990. V. 2(3). P. 414.

22. Zhou Y. Degrees of locality of energy transfer in the inertial range // Phys. Fluids. 1993. V. 5. P. 1092–1094.

23. Verma M. K., Ayyer A., Debliquy O., Kumar S., Chandra A. V. Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence // Pramana-J. Phys. 2005. V. 65(2). P. 297–310.

24. Orszag S. A. Analytical theories of turbulence // J. Fluid Mech. 1970. V. 41. P. 363–386.

25. Kraichnan R. H. The structure of isotropic turbulence at very high Reynolds numbers // J. Fluid Mech. 1959. V. 5. P. 497–543.

26. Verma M. K., Chatterjee A. G., Yadav R. K., Paul S., Chandra M., Samtaney R. Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations // Pramana-J. Phys. 2013. V. 81(4). P. 617–629.

27. Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral Methods in Fluid Dynamics. Berlin, Heidelberg: Springer-Verlag, 1988.

28. Stepanov R., Plunian F., Kessar M., Balarac G. Systematic bias in the calculation of spectral density from a three-dimensional spatial grid // Phys. Rev. E. 2014. V. 90(5). P. 053309.

29. Dar G., Verma M. K., Eswaran V. Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results // Physica D. 2001. V. 157(3). P. 207–225.

30. Verma M. K. Statistical theory of magnetohydrodynamic turbulence: recent results // Phys. Rep. 2004. V. 401(5). P. 229–380.

31. Reddy K. S., Verma M. K. Strong anisotropy in quasi-static magnetohydrodynamic turbulence for high interaction parameters // Phys. Fluids. 2014. V. 26. P. 025109.

32. Sreenivasan K. R. On the universality of the Kolmogorov constant // Phys. Fluids. 1995. V. 7(11). P. 2778.

33. Yeung P. K., Zhou Y. Universality of the Kolmogorov constant in numerical simulations of turbulence // Phys. Rev. E. 1997. V. 56(2). P. 1746–1752.

34. Gotoh T., Fukayama D., Nakano T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation // Phys. Fluids. 2002. V. 14(3). P. 1065–1081.

35. Yokokawa M., Itakura K., Uno A., Ishihara T., Kaneda Y. 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator // in: Proceeding Supercomputing 2002, 2002.

36. Mininni P. D., Alexakis A., Pouquet A. Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws // Phys. Rev. E. 2008. V. 77(3). P. 036306.

37. Donzis D. A., Sreenivasan K. R. The bottleneck effect and the Kolmogorov constant in isotropic turbulence // J. Fluid Mech. 2010. V. 657. P. 171–188.

38. Kraichnan R. H. Inertial-range transfer in two-and-three-dimensional turbulence // J. Fluid Mech. 1971. V. 47. P. 525–535.

39. Yakhot V., Orszag S. A. Renormalization group analysis of turbulence. I. Basic theory // J. Sci. Comput. 1986. V. 1(1). P. 3–51.

40. Falkovich G. Bottleneck phenomenon in developed turbulence // Phys. Fluids. 1994. V. 6(4). P. 1411–1414.

41. Lohse D., Müller-Groeling A. Bottleneck effects in turbulence: Scaling phenomena in r versus p space // Phys. Rev. Lett. 1995. V. 74(10). P. 1747–1750.

42. Dobler W., Haugen N. E.L., Yousef T. A., Brandenburg A. Bottleneck effect in three-dimensional turbulence simulations // Phys. Rev. E. 2003. V. 68(2). P. 026304.

43. Verma M. K., Donzis D. A. Energy transfer and bottleneck effect in turbulence // J. Phys. A: Math. Theor. 2007. V. 40(16). P. 4401–4412.

44. Debliquy O., Verma M. K., Carati D. Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamic turbulence // Phys. Plasmas 2005. V. 12(4). P. 042309.

45. Falkovich G., Fouxon A. Anomalous scaling of a passive scalar in turbulence and in equilibrium // Phys. Rev. Lett. 2005. V. 94(21). P. 214502.

Система Orphus

Loading...
Up