Own transverse oscillations of a rotating rod of variable cross section

 
PIIS057232990002464-0-1
DOI10.31857/S057232990002464-0
Publication type Article
Status Published
Authors
Affiliation: Institute of Problems of Mechanics. A.Yu. Ishlinsky RAS
Address: Russian Federation
Affiliation:
Address: Russian Federation,
Affiliation: Institute of Problems of Mechanics. A.Yu. Ishlinsky RAS
Address: Russian Federation
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela
EditionIssue 5
Pages40-52
Abstract

  

Keywords
Received13.12.2018
Publication date13.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1387

Readers community rating: votes 0

1. Zhuravlev V.F., Klimov D.M. Prikladnye metody v teorii kolebanij. M.: Nauka, 1988. 328 s.

2. Klimov D.M., Zhuravlev V.F., Zhbanov Yu.K. Kvartsevyj polusfericheskij rezonator (volnovoj tverdotel'nyj giroskop). M.: Izd. Kim L.A., 2017. 194 s.

3. Kostyuk A.G., Frolov V.V., Bulkin A.E., Trukhnij A.D. Parovye i gazovye turbiny dlya ehlektrostantsij. M.: MEhI, 2008. 556 s.

4. Banerjee J.R., Su H., Jackson D.R. Free vibration of rotating tapered beams using the dynamic stiffness method // J. Sound Vib. 2006. V. 298. № 4–5. P. 1034–1054.

5. Ozdemir O., Kaya M.O. Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method // J. Sound Vib. 2006. V. 289. № 1. P. 413–420.

6. Ozdemir O., Kaya M.O. Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method // Meccanica. 2006. V. 41. № 6. P. 661–670.

7. Attarnejad R., Shahba A. Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution // Meccanica. 2011. V. 46. № 6. P. 1267–1281.

8. Sarkar K., Ganguli R. Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition // Meccanica. 2013. V. 48. № 7. P. 1661–1676.

9. Chen Y., Zhang J., Zhang H. Flapwise bending vibration of rotating tapered beams using variational iteration method // J. Vib. Control. 2014. V. 22. № 15. P. 3384–3395.

10. Chen Y., Zhang J., Zhang H., Li X., Zhou J. Extraction of natural frequencies and mode shapes of rotating beams by variational iteration method // Int. J. Struct. Stab. Dyn. 2016. V. 16. № 3. P. 145–106.

11. Adair D., Jaeger M. A power series solution for rotating nonuniform Euler-Bernoulli cantilever beams // J. Vib. Control. 2017. OnlineFirst. https://doi.org/10.1177/1077546317714183

12. Mazanoglu K., Guler S. Flap-wise and chord-wise vibrations of axially functionally graded tapered beams rotating around a hub // Mech. Syst. Signal Process. 2017. V. 89. P. 97–107.

13. Nourifar M., Keyhani A., Aftabi Sani A. Free vibration analysis of rotating Euler-Bernoulli beam with exponentially varying cross-section by differential transform method // Int. J. Struct. Stab. Dyn. 2018. V. 18. № 2. P. 1850024.

14. Bulut G. Effect of taper ratio on parametric stability of a rotating tapered beam // Eur. J. Mech. A Solids. 2013. V. 37. P. 344–350.

15. Adair D., Jaeger M. Vibration analysis of a uniform pre-twisted rotating Euler-Bernoulli beam using the modified adomian decomposition method // Math. Mech. Solids. 2017. OnlineFirst. https://doi.org/10.1177/1081286517720843

16. Bazoune A., Khulief Y.A. A finite beam element for vibration analysis of rotating tapered Timoshenko beams // J. Sound Vib. 1992. V. 156. № 1. P. 141–164.

17. Rao S.S., Gupta R.S. Finite element vibration analysis of rotating Timoshenko beams // J. Sound Vib. 2001. V. 242. № 1. P. 103–124.

18. Lee S.-Y., Lin S.-M., Lin Y.-S. Instability and vibration of a rotating Timoshenko beam with precone // Int. J. Mech. Sci. 2009. V. 51. № 2. P. 114–121.

19. Bambill D.V., Rossit C.A., Rossi R.E., Felix D.H., Ratazzi A.R. Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions // Meccanica. 2013. V. 48. № 6. P. 1289–1311.

20. Rajasekaran S. Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach // Meccanica. 2013. V. 48. № 5. P. 1053–1070.

21. Banerjee J.R., Kennedy D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects // J. Sound Vib. 2014. V. 333. № 26. P. 7299–7312.

22. Tang A.-Y., Li X.-F., Wu J.-X., Lee K.Y. Flapwise bending vibration of rotating tapered Rayleigh cantilever beams // J. Constr. Steel Res. 2015. V. 112. P. 1–9.

23. Chen Y., Zhang J., Zhang H. Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method // J. Vib. Control. 2017. V. 23. № 2. P. 220–234.

24. Turhan O., Bulut G. On nonlinear vibrations of a rotating beam // J. Sound Vib. 2009. V. 322. № 1. P. 314–335.

25. Arvin H. Bakhtiari-Nejad F. Non-linear modal analysis of a rotating beam // Int. J. Non-Lin. Mech. 2011. V. 46. № 6. P. 877–897.

26. Kim H., Yoo H.H., Chung J. Dynamic model for free vibration and response analysis of rotating beams // J. Sound Vib. 2013. V. 332. № 22. P. 5917–5928.

27. Huo Y., Wang Z. Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam // Arch. Appl. Mech. 2016. V. 86. № 6. P. 1147–1161.

28. Bekhoucha F., Rechak S., Duigou L., Cadou J.M. Nonlinear free vibrations of centrifugally stiffened uniform beams at high angular velocity // J. Sound Vib. 2016. V. 379. P. 177–190.

29. Li L., Li Y.H., Liu Q.K., Jiang B.K. Effect of balance weight on dynamic characteristics of a rotating wind turbine blade // J. Eng. Math. 2016. V. 97. № 1. P. 49–65.

30. Akulenko L.D., Nesterov S.V. High-Precision Methods in Eigenvalue Problems and Their Applications. Boca Raton: Chapman and Hall/CRC, 2005. 260 p.

31. Akulenko L.D., Gavrikov A.A., Nesterov S.V. Chislennoe reshenie nelinejnykh po spektral'nomu parametru vektornykh zadach Shturma–Liuvillya s usloviyami Dirikhle // Zhurn. vychisl. matem. i matem. fiz. 2017. T. 57. № 9. P. 1503–1516.

32. Gavrikov A.A. Numerical solution of eigenproblems for linear Hamiltonian systems and their application to non-uniform rod-like systems // IEEE Conf. Proc., Proc. of Int. Conf. DD-2017. 2017. P. 122–128.

33. Gavrikov A.A. An iterative solution approach to eigenvalue problems for linear Hamiltonian systems and its application to a hybrid system control problem // 22st Int. Conf. Methods and Models in Automation and Robotics (MMAR). Poland: Miedzyzdroje, 2017. 2017. P. 588–593.

34. Akulenko L.D., Gavrikov A.A., Nesterov S.V. Sobstvennye kolebaniya truboprovoda na uprugom osnovanii, transportiruyuschego zhidkost' // Izv. RAN. MTT. 2018. № 1. P. 123–132.

35. Akulenko L.D., Bolotnik N.N. Ob upravlyaemom vraschenii uprugogo sterzhnya // PMM. 1982. T. 46. Vyp. 1. P. 587–595.

36. Akulenko L.D., Gukasyan A.A. Upravlenie ploskimi dvizheniyami uprugogo zvena manipulyatora // Izv. RAN. MTT. 1983. № 5. P. 33–41.

37. Akulenko L.D., Korovina L.I., Nesterov S.V. Sobstvennye poperechnye kolebaniya vraschayuschegosya sterzhnya // Izv. RAN. MTT. 2007. № 5. P. 135–144.

38. Timoshenko S.P., Yang D.Kh., Uiver U. Kolebaniya v inzhenernom dele. M.: Fizmatlit,1985. 472 s.

39. Roseau M. Vibrations in Mechanical Systems. N.-Y., B.: Springer, 1987. 515 p.

Система Orphus

Loading...
Up