Greene tensor and solution of the Boussinesq problem in the generalized theory of elasticity

 
PIIS057232990000710-1-1
DOI10.31857/S057232990000710-1
Publication type Article
Status Published
Authors
Affiliation:
Institute of Problems of Mechanics. A.Yu. Ishlinsky RAS
Institute of Applied Mechanics RAS
Address: Russian Federation, Moscow
Affiliation: Institute of Applied Mechanics RAS
Address: Russian Federation, Moscow
Journal nameIzvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela
EditionIssue 4
Pages100-114
Abstract

   

Keywords
Received13.10.2018
Publication date29.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1309

Readers community rating: votes 0

1. Vasil'ev V.V. Simmetriya tenzora napryazhenij i singulyarnye resheniya v teorii uprugosti // Izv. RAN. MTT. 2010. №2. S. 62–72.

2. Vasil'ev V.V., Lur'e S.A. Novoe reshenie osesimmetrichnoj kontaktnoj zadachi teo-rii uprugosti // Izv. RAN. MTT. 2017. № 5. S. 12–21.

3. Vasil'ev V.V., Lur'e S.A. Nelokal'nye resheniya singulyarnykh zadach matematicheskoj fiziki i mekhaniki // PMM. 2018. № 2.

4. Gutkin M.Yu., 2000. Nanoscopics of dislocations and disclinations in gradient Elasticity// Rev. Adv. Mater. Sci. 2000. No 1. P. 27–60.

5. Vasil'ev V.V., Lur'e S.A. O singulyarnosti resheniya v ploskoj zadache teorii upru- gosti dlya konsol'noj polosy// Izv. RAN. MTT. 2013. №4. S. 40–49.

6. Vasil'ev V.V., Lur'e S.A. Model' sploshnoj sredy s mikrostrukturoj // Kompozity i nanostruktury. 2015. T.7. №1. S. 2–10.

7. Vasil'ev V.V., Lur'e S.A. Obobschennaya teoriya uprugosti // Izv. RAN. MTT. 2015. №4. S. 16-27.

8. Vasil'ev V.V., Lur'e S. A. Obobschennoe reshenie o krugloj membrane, nagruzhennoj so sredotochennoj siloj // Izv. RAN. MTT. 2016. № 3. S. 115–119.

9. Vasil'ev V. V., Lur'e S. A. Novoe reshenie ploskoj zadachi o ravnovesnoj treschine // Izv. RAN. MTT. 2016. № 5. S. 61–67.

10. Lazar M., Maugin G.A. A note on line forces in gradient elasticity// Mech. Res. Commun. 2006. No 33. P. 674–680.

11. Lazar M. The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations // Int. J. Solids Struct. 2013. No. 50. P. 352–362.

12. Papkovich P.F. Teoriya uprugosti. Leningrad: Oborongiz, 1939. 640s.

13. Novatskij V. Teoriya uprugosti. M.: Nauka, 1975. 872s.

14. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika. M.: Nauka, 1986. 736s.

Система Orphus

Loading...
Up