Calculation of relative variance of the magnetization and susceptibility in a disordered Ising model. Results of monte carlo simulation

Publication type Article
Status Published
Affiliation: Institute of Physics, Dagestan Scientific Center of RAS
Address: Russian Federation
Affiliation: Department of Mathematics and Computer Science, Dagestan Scientific Center of RAS
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 12

Based on the Monte Carlo method, the relative dispersions of the magnetization Rm and the susceptibility Rx in the disordered Ising model are calculated as a function of the degree of dilution of the disorder. It is shown, that the introduction of disorder in the form of nonmagnetic impurities in the three-dimensional Ising model leads to a nonzero values for Rm and Rx at the critical point.

KeywordsIsing model, disorder, dispersion, Monte Carlo
Publication date30.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1242

Readers community rating: votes 0

1. S. Wiseman, E. Domany. Self-averaging, distribution of pseudocritical temperatures, and finite size scaling in critical disordered systems // Phys. Rev. E, 1998, v.58, p.2938.

2. S. Wiseman, E. Domany. Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems // Phys. Rev. Lett., 1998, v.81, p.22.

3. A. Aharony, A.B. Harris, S. Wiseman. Critical Disordered Systems with Constraints and the Inequality  > 2/d // Phys. Rev. Lett., 1998, v.81, p.252.

4. P.-E. Berche, Ch. Chatelain, B. Berche, W. Janke. Bond dilution in the 3D Ising model: a Monte Carlo study // European Physical J. B, 2004, v.38, p.463.

5. M.I. Marqués, J.A. Gonzalo, J. Íñiguez. Self-averaging of random and thermally disordered diluted Ising systems // Phys. Rev. E, 1999, v.60, p.2394.

6. M.I. Marqués, J.A. Gonzalo, J. Íñiguez. Universality class of thermally diluted Ising systems at criticality // Phys. Rev. E, 2000, v.62, p.191

7. V.V. Prudnikov, P.V. Prudnikov, A.A. Fedorenko. Field-theory approach to critical behaviour of systems with long-range correlated defects // Phys. Rev. B, 2000, v.62, p.8777.

8. A.Z. Patashinskij, V.A. Pokrovskij. Fluktuatsionnaya teoriya fazovykh perekhodov. M.: Nauka, 1982, 223 s.;

9. A.K. Murtazaev, A.B. Babaev. Phase Transitions in the Two-Dimensional Ferro- and Antiferromagnetic Potts Models on a Triangular Lattice // Journal of Experimental and Theoretical Physics, 2012, v.115, №6, p.1042.

10. A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova. Investigation of the Critical Properties in the 3d Site-Diluted Potts Model // Solid State Phenomena, 2009, v.152–153, p.571.

11. A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova. Phase Transitions in 3D Site-Diluted Potts Model with Spin States q=4 // Solid State Phenomena, 2011, v.168–169, p.357.

12. A.K. Murtazaev, A.B. Babaev. Tricritical Point of the Three-Dimensional Potts Model (q=4) with Quenched Nonmagnetic Disorder // JETP Letters, 2014, v.99, p.535.

13. A.K. Murtazaev, I.K. Kamilov, A.B. Babaev. Critical behavior of spin systems with quenched disorder // J. of Magnetism and Magnetic Materials, 2006, v.300, p.538.

14. V.V. Prudnikov, P.V. Prudnikov, A.N. Vakilov, A.S. Krinitsin. Komp'yuternoe modelirovanie kriticheskogo povedeniya trekhmernoj modeli neuporyadochennoj modeli Izinga // ZhEhTF, 2007, t.132, c.417;

15. V.S. Dotsenko. Kriticheskie yavleniya v spinovykh sistemakh s besporyadkom // UFN, 1995, t.165, s.481.

16. U. Wolff. Collective Monte Carlo Updating for spin systems // Phys. Rev. Lett., 1989, v.62, p.361.

17. J.-S. Wang, R.H. Swendsen. Cluster Monte Carlo algorithms // Phys. A, 1990, v.167, p.565.

18. A.K. Murtazaev, A.B. Babaev. Phase transitions and critical phenomena in a three-dimensional site-diluted Potts model // J. of Magnetism and Magnetic Materials, 2012, v.324, p.3870.

19. A.B. Babaev, A.K. Murtazaev. Computer simulation of the critical behavior in spin models with nonmagnetic impurities // Low Temperature Physics, 2015, v.41, p.608.

20. P. Peczak, A.M. Ferrenberg, D.P. Landau. High-accuracy Monte Carlo study of the threedimensional classical Heisenberg ferromagnet // Phys. Rev. B, 1991, v.43, p.6087.

21. O.A. Vasil'ev, L.N. Schur. Universal'nost' otnosheniya kriticheskikh amplitud vospriimchivosti dvumernoj modeli Izinga s nemagnitnymi primesyami // ZhEhTF, 2000, t.117, s.1110-1121.

Система Orphus