views: 1242
Readers community rating: votes 0
1. S. Wiseman, E. Domany. Self-averaging, distribution of pseudocritical temperatures, and finite size scaling in critical disordered systems // Phys. Rev. E, 1998, v.58, p.2938.
2. S. Wiseman, E. Domany. Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems // Phys. Rev. Lett., 1998, v.81, p.22.
3. A. Aharony, A.B. Harris, S. Wiseman. Critical Disordered Systems with Constraints and the Inequality > 2/d // Phys. Rev. Lett., 1998, v.81, p.252.
4. P.-E. Berche, Ch. Chatelain, B. Berche, W. Janke. Bond dilution in the 3D Ising model: a Monte Carlo study // European Physical J. B, 2004, v.38, p.463.
5. M.I. Marqués, J.A. Gonzalo, J. Íñiguez. Self-averaging of random and thermally disordered diluted Ising systems // Phys. Rev. E, 1999, v.60, p.2394.
6. M.I. Marqués, J.A. Gonzalo, J. Íñiguez. Universality class of thermally diluted Ising systems at criticality // Phys. Rev. E, 2000, v.62, p.191
7. V.V. Prudnikov, P.V. Prudnikov, A.A. Fedorenko. Field-theory approach to critical behaviour of systems with long-range correlated defects // Phys. Rev. B, 2000, v.62, p.8777.
8. A.Z. Patashinskij, V.A. Pokrovskij. Fluktuatsionnaya teoriya fazovykh perekhodov. M.: Nauka, 1982, 223 s.;
9. A.K. Murtazaev, A.B. Babaev. Phase Transitions in the Two-Dimensional Ferro- and Antiferromagnetic Potts Models on a Triangular Lattice // Journal of Experimental and Theoretical Physics, 2012, v.115, №6, p.1042.
10. A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova. Investigation of the Critical Properties in the 3d Site-Diluted Potts Model // Solid State Phenomena, 2009, v.152–153, p.571.
11. A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova. Phase Transitions in 3D Site-Diluted Potts Model with Spin States q=4 // Solid State Phenomena, 2011, v.168–169, p.357.
12. A.K. Murtazaev, A.B. Babaev. Tricritical Point of the Three-Dimensional Potts Model (q=4) with Quenched Nonmagnetic Disorder // JETP Letters, 2014, v.99, p.535.
13. A.K. Murtazaev, I.K. Kamilov, A.B. Babaev. Critical behavior of spin systems with quenched disorder // J. of Magnetism and Magnetic Materials, 2006, v.300, p.538.
14. V.V. Prudnikov, P.V. Prudnikov, A.N. Vakilov, A.S. Krinitsin. Komp'yuternoe modelirovanie kriticheskogo povedeniya trekhmernoj modeli neuporyadochennoj modeli Izinga // ZhEhTF, 2007, t.132, c.417;
15. V.S. Dotsenko. Kriticheskie yavleniya v spinovykh sistemakh s besporyadkom // UFN, 1995, t.165, s.481.
16. U. Wolff. Collective Monte Carlo Updating for spin systems // Phys. Rev. Lett., 1989, v.62, p.361.
17. J.-S. Wang, R.H. Swendsen. Cluster Monte Carlo algorithms // Phys. A, 1990, v.167, p.565.
18. A.K. Murtazaev, A.B. Babaev. Phase transitions and critical phenomena in a three-dimensional site-diluted Potts model // J. of Magnetism and Magnetic Materials, 2012, v.324, p.3870.
19. A.B. Babaev, A.K. Murtazaev. Computer simulation of the critical behavior in spin models with nonmagnetic impurities // Low Temperature Physics, 2015, v.41, p.608.
20. P. Peczak, A.M. Ferrenberg, D.P. Landau. High-accuracy Monte Carlo study of the threedimensional classical Heisenberg ferromagnet // Phys. Rev. B, 1991, v.43, p.6087.
21. O.A. Vasil'ev, L.N. Schur. Universal'nost' otnosheniya kriticheskikh amplitud vospriimchivosti dvumernoj modeli Izinga s nemagnitnymi primesyami // ZhEhTF, 2000, t.117, s.1110-1121.