The explicit splitting scheme for Maxwell's equations

Publication type Article
Status Published
Affiliation: Polar Geophysical Institute
Address: Russian Federation
Affiliation: Polar Geophysical Institute
Address: Russian Federation
Affiliation: Polar Geophysical Institute
Address: Russian Federation
Affiliation: Polar Geophysical Institute
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 12

This paper presents a new explicit scheme for the numerical integration of Maxwell's equations in isotropic and anisotropic dielectrics and conductors, as well as in the plasma in the case of the Vlasov-Maxwell system. In this scheme, the electric and magnetic fields are calculated in the same time points in the same spatial grid nodes, and a splitting in spatial directions and physical processes has been used. Scheme is monotonic and has 2nd order accuracy in time and 3rd order accuracy in the spatial variables. The presented scheme allows us to use a much larger step of time integration in modeling the propagation of low-frequency signals in the ionosphere than the widely used method of finite differences in the time domain for the same accuracy.

KeywordsMaxwell's equations, splitting scheme, numerical integration
AcknowledgmentThis work was supported by the Russian Foundation for Basic Research, project 17-01-00100.
Publication date30.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 199

Readers community rating: votes 0

1. Yee Kane. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media // IEEE Transactions on Antennas and Propagation, 1966, v.14, p.02-307.

2. J.J. Simpson. Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method // Surveys Geophys, 2009, v.30, p.105-130. DOI 10.1007/s10712-009-9063-5.

3. J.J. Simpson, A. Taflove. A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz // IEEE Transactions on Antennas and Propagation, 2007, v.55, №6, p.1582-1590. DOI 10.1109/TAP.2007.897138.

4. D.L. Paul, C.J. Railton. Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity // IEEE Transactions on Antennas and Propagation, 2012, v.60. №1, p.310-317, DOI 10.1109/TAP.2011.2167940.

5. Y.Yu, J.J. Simpson. An collocated 3-D FDTD model of electromagnetic wave propogation in magnetized cold plasma // IEEE Transactions on Antennas and Propagation, 2010, v.58, №2, p.469-478, DOI 10.1109/TAP.2009.2037706.

6. A.N. Semenov, A.P. Smirnov. Chislennoe modelirovanie uravnenij Maksvella s dispersnymi materialami // Matematicheskoe modelirovanie, 2013, t.25, №12, s.19-32;

7. A.G. Kulikovskij, N.V. Pogorelov, A.Yu. Semenov. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenij. M.: Fizmatlit, 2012, 656 s.

8. D.V. Bisikalo, A.G. Zhilkin, A.A. Boyarchuk. Gazodinamika tesnykh dvojnykh zvezd. M.: Fizmatlit, 2013, 632 s.

9. V.M. Kovenya, N.N. Yanenko. Metod rasschepleniya v zadachakh gazovoj dinamiki. Novosibirsk: Nauka, 1981.

10. K.V. Vyaznikov, V.F. Tishkin, A.P. Favorskij. Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenij giperbolicheskogo tipa // Matem. modelirovanie, 1989, t.1, № 5, s.95-120.

11. A. Harten. High resolution schemes for hyperbolic conservation laws // J. Comp. Phys., 1983, v.49, p.357.

12. O.M. Belotserkovskij, V.A. Guschin, V.N. Kon'shin. Metod rasschepleniya dlya issledovaniya techenij stratifitsirovannoj zhidkosti so svobodnoj poverkhnost'yu // ZhVM i MF, 1987, t.27, № 4, s.594-609.

13. O.M. Belotserkovskij, L.M. Kraginskij, A.M. Oparin. Chislennoe modelirovanie prostranstvennykh techenij v stratifitsirovannoj atmosfere, vyzvannykh sil'nymi krupnomasshtabnymi vozmuscheniyami // ZhVM i MF, 2003, t.43, № 11, s.1744-1758.

14. V.S. Mingalev, I.V. Mingalev, O.V. Mingalev, A.M. Oparin, K.G. Orlov. Obobschenie monotonnoj gibridnoj skhemy vtorogo poryadka dlya uravnenij gazovoj dinamiki na sluchaj neregulyarnoj prostranstvennoj setki // ZhVM i MF, 2010, t.50, №5, s.923-936.

15. A.N. Tikhonov, A.A. Samarskij. Uravneniya matematicheskoj fiziki. 5-e izd. M.: Nauka, 1977.

16. B.S. Svetov. Osnovy geoehlektriki. M.: Izd-vo LKI, 2008.

Система Orphus