Исследование особенностей трещиноватых зон путем полноволнового численного моделирования

 
Код статьиS023408790001931-8-1
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация:
Московский физико-технический институт
Научно-исследовательский институт системных исследований РАН
Негосударственное образовательное учреждение «Учебно-научно-производственный комплекс Московского физико-технического института»
Адрес: Российская Федерация
Аффилиация:
Московский физико-технический институт
Научно-исследовательский институт системных исследований РАН
Адрес: Российская Федерация
Название журналаМатематическое моделирование
ВыпускТом 30 номер 11
Страницы105-126
Аннотация

Изложены этапы и результаты исследования особенностей волновых процессов в нефтеносных трещиноватых зонах путем применения анализа пространственных динамических картин (wave patterns), полученных в результате суперкомпьютерного моделирования сеточно-характеристическим методом. Полноволновое моделирование нередко используется в геофизике для построения синтетических сейсмограмм и как часть решения обратных задач. В данной работе продемонстрировано, что путем анализа самих рассчитанных пространственных динамических волновых полей можно получать выводы, которые в дальнейшем могут быть использованы при проведении геофизических исследований. Предложенный метод анализа волновых картин упрощает изучение динамики различных типов волн по сравнению с методами анализа и интерпретации сейсмограмм и при этом более точен, чем лучевой метод (геометрическое приближение). Были рассмотрены три вида трещиноватых кластеров: "Сплошные", "Прерывистые" и "Шахматные". В результате исследований был получен ряд характерных закономерностей, например, зависимость угла рассеяния сейсмических волн от используемой частоты источника и геометрических особенностей расположения трещин в кластере и зависимость от частоты источника траектории и скорости движения точки отрыва продольной головной волны от поперечной волны. Эти зависимости впоследствии могут быть использованы для разработки более эффективных способов сейсмической разведки углеводородов и изучения трещиноватых зон, например, для подбора оптимального оборудования и метода сейсмической съемки. Кроме того, в работе показана важность изучения пространственных динамических волновых картин при разработке и тестировании численных методов, контактных и граничных условий, в том числе, неотражающих. Также в работе предложен подход построения нелинейной шкалы, позволяющей одновременно анализировать пространственные динамические волновые процессы, в которых амплитуды волн отличаются более чем в 20 раз.

Ключевые словаволновая динамика, упругие волны, трещиноватые зоны, супер-компьютерное моделирование, сеточно-характеристический метод, сейсморазведка
Источник финансированияИсследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-29-15097 офи_м.
Получено09.11.2018
Дата публикации21.11.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1079

Оценка читателей: голосов 0

1. K.M. Magomedov, A.S. Kholodov. The construction of difference schemes for hyperbolic equations based on characteristic relations // USSR Comp. Math. and Math. Physics, 1969, v.9, №2, p.158-176.

2. К.М. Магомедов, А.С. Холодов. Сеточно-характеристические численные методы. – М.: Наука, 1988, 287c.

3. A.S. Kholodov. Construction of difference schemes with positive approximation for hyperbolic equations // USSR Comp. Math. and Math. Physics, 1978, v.18, №6, p.116-132.

4. A.S. Kholodov. The construction of difference schemes of increased order of accuracy for equations of hyperbolic type // USSR Comp. Math. and Math. Physics, 1980, v.20, №6, p.234-253.

5. I.B. Petrov, A.S. Kholodov. Regularization of discontinuous numerical solutions of equations of hyperbolic type // USSR Comp. Math. and Math. Physics, 1984, v.24, №4, p.128-138.

6. I.E. Petrov, A.S. Kholodov. Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method // USSR Comp. Math. and Math. Physics, 1984, v.24, №3, p.61-73.

7. V.I. Kondaurov, I.B. Petrov, A.S. Kholodov. Numerical modeling of the process of penetration of a rigid body of revolution into an elastoplastic barrier // Journal of Applied Mechanics and Technical Physics, 1984, v.25, №4, p.625-632.

8. A.V. Favorskaya, I.B. Petrov. Grid-characteristic method // Innovations Wave Modelling and Decision Making, SIST Series, 2018, v.90, Springer Switzerland, Chapter 7, p.117-160.

9. V.A. Biryukov, V.A. Miryakha, I.B. Petrov, N.I. Khokhlov. Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods // Comp. Mathematics and Mathematical Physics, 2016, v.56, №6, p.1086-1095.

10. I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, V.A. Miryakha, A.V. Sannikov, V.I. Golubev. Monitoring the state of the moving train by use of high performance systems and modern computation methods // Math. Models and Comp. Simulations, 2015, v.7, №1, p.51-61.

11. I. Petrov, A. Vasyukov, K. Beklemysheva, A. Ermakov, A. Favorskaya. Numerical Modeling of Non-destructive Testing of Composites // Proc. Comp. Science, 2016, v.96, p.930-938.

12. A. Favorskaya, I. Petrov, N. Khokhlov. Numerical Modeling of Wave Processes during Shelf Seismic Exploration // Procedia Computer Science, 2016, v.96, p.920-929.

13. A.V. Favorskaya, N.I. Khokhlov, V.I. Golubev, A.V. Ekimenko, Yu.V. Pavlovskiy, I.Yu. Khromova, I.B. Petrov. Wave processes modelling in geophysics // Innovations Wave Modelling and Decision Making, SIST Series, 2018, v.90, Springer Switzerland, Chapter7, p.187-218.

14. A.V. Favorskaya, I.B. Petrov. Wave responses from oil reservoirs in the Arctic shelf zone // Doklady Earth Sciences, 2016, v.466, №2, p.214-217.

15. A.V. Favorskaya, I.B. Petrov. Theory and practice of wave processes modelling // Innovations Wave Modelling and Decision Making, SIST Series, 2018, v.90, Springer Switzerland, Chapter 1, p.1-6.

16. A.V. Favorskaya, I.B. Petrov. Numerical modeling of dynamic wave effects in rock masses // Doklady Mathematics, 2017, v.95, №3, p.287-290.

17. M. Dumbser, M. Käser. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case // Geophysical Journal International, 2006, v.167, №6, p.319-336.

18. D. Komatitsch, J.P. Vilotte, R. Vai, J.M. Castillo-Covarrubias, F.J. Sanchez-Sesma. The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems // International Journal for numerical methods in engineering, 1999, v.45, №9, p.1139-1164.

19. E. Faccioli, F. Maggio, R. Paolucci, A. Quarteroni. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method // J. of Seismol., 1997, v.1, №3, p.237-251.

20. P. Moczo, J.O. Robertsson, L. Eisner. The finite-difference time-domain method for modeling of seismic wave propagation // Advances in geophysics, 2007, v.48, p.421-516.

21. T. Wang, X. Tang. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach // Geophysics, 2003, v.68, №5, p.1749-1755

22. R.W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 1996, v.86, №4, p.1091-1106.

23. M.S. Zhdanov. Geophysical inverse theory and regularization problems. – Amsterdam: Elsevier, 2002.

24. П.В. Крауклис, Л.А. Крауклис. Об одном типе волн в средах, содержащих поверхности ослабленного механического контакта / Записки науч. семинаров ПОМИ, 1988, т.173, 113-122.

25. В.Б. Левянт, В.А. Миряха, М.В. Муратов, И.Б. Петров. Оценка влияния на сейсмический отклик степени раскрытости трещины и доли площади локальных контактов к ее поверхности // Технологии сейсморазведки, 2015, №3, с.16-30.

26. J. Zhang. Elastic wave modeling in fractured media with an explicit approach // Geophysics, 2005, v.70, №5, p.T75-T85.

27. R. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University Press, 2002.

28. A.V. Favorskaya, I.B. Petrov. A study of high-order grid-characteristic methods on unstructured grids // Numerical Analysis and Applications, 2016, т.9, №2 – С. 171-178.

29. В.М. Бабич. Многомерный метод ВКБ или лучевой метод. Его аналоги и обобщения // Итоги науки и техники. Сер. «Современные проблемы математики. Фундаментальные направления», 1988, т.34, с.93-134.

30. A.S.Glassner (ed.). An introduction to ray tracing. − Elsevier, 1989.

31. А.Г. Куликовский, Н.В. Погорелов, А.Ю. Семенов. Математические вопросы численного решения гиперболических систем уравнений. – М. : Физматлит, 2001, 607с.

32. М.А. Ильгамов, А.Н. Гильманов. Неотражающие условия на границах расчётной области. М.: Физматлит, 2003.

33. Q.H. Liu, B.K. Sinha. A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations // Geophysics, 2003, v.68, №.5, p.1731-1743.

34. F.H. Drossaert, A. Giannopoulos. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves // Geophysics, 2007, v.72, №2, p.T9-T17.

35. N. Hamdan, O. Laghrouche, P.K. Woodward, A. El-Kacimi. Combined paraxial-consistent boundary conditions finite element model for simulating wave propagation in elastic halfspace media // Soil Dynamics and Earthquake Engineering, 2015, v.70, p.80-92.

36. G. Festa, S. Nielsen. PML absorbing boundaries. Bulletin of the Seismological Society of America, 2003, v.93, №2, p.891-903

Система Orphus

Загрузка...
Вверх