views: 1534
Readers community rating: votes 0
1. V.M. Boiko, V.P. Kiselev, S.P. Kiselev, A.N. Papyrin, S.V. Poplavsky, V.M. Fomin. Shock wave interaction with a cloud of particles // Shock Waves, 1997, v.7, p.275-285.
2. J.D. Regele, J. Rabinovitch, T. Colonius, G. Blanquart. Unsteady effects in dense, high speed, particle laden flows // Int. J. Multiphase Flow, 2014, v.61, p.1-13.
3. D.A. Sidorenko, P.S. Utkin. Kompleksnyj podkhod k probleme chislennogo issledovaniya vzaimodejstviya udarnoj volny s plotnym oblakom chastits // Gorenie i vzryv, 2017, t.10, №2, s.47-51;
4. P.S. Utkin. Matematicheskoe modelirovanie vzaimodejstviya udarnoj volny s plotnoj zasypkoj chastits v ramkakh dvukhzhidkostnogo podkhoda // Khim. fizika, 2017, t.36, №11, s.61-71;
5. I.A. Bedarev, A.V. Fedorov. Pryamoe modelirovanie relaksatsii neskol'kikh chastits za prokhodyaschimi udarnymi volnami // Inzh.-fiz. zhurnal, 2017, t.90, №2, s.450-457
6. D. Drikakis, D. Ofengeim, E. Timofeev, P. Voionovich. Computation of non-stationary shock wave/cylinder interaction using adaptive-grid methods // J. Fluids and Structures, 1997, v.11, №6, p.665-692.
7. K. Luo, Y. Luo, T. Jin, J. Fan. Studies on shock interactions with moving cylinders using immersed boundary method // Phys. Rev. Fluids, 2017, v.2, paper 064302.
8. Y. Sakamura, M. Oshima, K. Nakayama, K. Motoyama. Shock-induced motion of a spherical particle floating in air // Proc. 31st Int. Symp. on Shock Waves, Nagoya, Japan, 9–14 July 2017, p. 249.
9. I.S. Men'shov, M.A. Kornev. Metod svobodnoj granitsy dlya chislennogo resheniya uravnenij gazovoj dinamiki v oblastyakh s izmenyayuschejsya geometriej // Mat. mod., 2014, t.26, №5, s.99-112;
10. V.P. Kolgan. Primenenie printsipa minimal'nykh znachenij proizvodnoj k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenij gazovoj dinamiki // Uchenye zapiski TsAGI, 1972, t.3, №6, s.68-77;
11. A. Chertock, A. Kurganov. A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries // Comm. Math. Sci., 2008, v.6, №3, p.531-556.
12. S.K. Sambasivan, H.S. Udaykumar. Ghost fluid method for strong shock interactions. Part 2: Immersed solid boundaries // AIAA J., 2009, v.47, №12, p.2923-2937.
13. M. Arienti, P. Hung, E. Morano, J.E. Shepherd. A level set approach to Eulerian – Lagrangian coupling // J. Comp. Phys., 2003, v.185, №1, p.213-251.
14. S. Tan, C.-W. Shu. A high order moving boundary treatment for compressible inviscid flows // J. Comp. Phys., 2011, v.230, №15, p.6023-6036.
15. H. Forrer, M. Berger. Flow simulations on Cartesian grids involving complex moving geometries // Proc. 7th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl., 1999, Zurich, v.1, p.315-324.
16. K.M. Shyue. A moving-boundary tracking algorithm for inviscid compressible flow // Proc. 11th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl., 2008, Lyon, July 17–21, 2006, p.989-996.
17. W.D. Henshaw, D.W. Schwendeman. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow // J. Comp. Phys., 2006, v.216, №2, p.744-779.
18. B. Muralidharan, S. Menon. Simulations of unsteady shocks and detonation interactions with structures // Proc. 49th AIAA/ASME/SAE/ASEE Joint Prop. Conf. 2013, San Jose, CA, USA, July 14–17, 2013, AIAA p.2013-3655
19. V. Gol'dsmit. Udar. Teoriya i fizicheskie svojstva soudaryaemykh tel. – M.: Izd-vo liter. po stroitel'stvu, 1965, 448 s.
20. R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, J.M. Koning, R.M. Greenman, G.T. Nakafuji. Direct numerical simulation of disperse multiphase high-speed flows // Proc. 42nd AIAA Aerospace Sci. Meet.&Exhibit, Reno, Nevada, USA, January 5–8, 2004, AIAA p.2004-1284.
21. I.V. Abalakin, N.S. Zhdanova, T.K. Kozubskaya. Realizatsiya metoda pogruzhennykh granits dlya modelirovaniya zadach vneshnego obtekaniya na nestrukturirovannykh setkakh // Mat. mod., 2015, t.27, №10, s.5-20;