Аpplication of the CABARET algorithm for modeling turbulent mixing on the example of the Richtmyer-Meshkov instability

 
PIIS023408790001168-8-1
DOI10.31857/S023408790001168-8
Publication type Article
Status Published
Authors
Affiliation: Nuclear Safety Institute of Russian Academy of Sciences
Address: Russian Federation, Moscow
Affiliation: Nuclear Safety Institute of Russian Academy of Sciences
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 8
Pages3-16
Abstract

Using previously constructed by authors CABARET algorithm for multicomponent gas mixtures movement calculation, a numerical simulation of a physical instability, emerging during the passage of a shock wave through initially resting boundary between gaseous media with different physical properties, followed by turbulization of the flow in flat geometry. Simulation of two problems is carried out: the passage of a shock wave through a rectangular subdomain filled with heavy gas and the development of Richtmyer-Meshkov instability during the passage of a shock wave through the sinusoidal interface between the media. A comparison of the evolution of the mixing zone width with the experimental, theoretical and numerical results of other authors is conducted.

KeywordsCABARET scheme, turbulent mixing, Richtmyer-Meshkov instability
Received25.09.2018
Publication date04.10.2018
Number of characters746
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1485

Readers community rating: votes 0

1. R.D. Richtmyer. Taylor instability in shock acceleration of compressible fluids // Communications on Pure and Applied Mathematics, 1960, v.13, p.297-319.

2. E.E. Meshkov. Instability of the Interface of Two Gases Accelerated by a Shock Wave // Soviet Fluid Dynamics, 1969, №4, p.101-104.

3. K.A. Meyer, P.J. Blewett. Numerical Investigation of Stability of a Shock-Accelerated Interface between Two Fluids // Physics of Fluids, 1972, v.15, № 3, p.753-759.

4. Q. Zhang, S.I. Sohn , Nonlinear Theory of Unstable Fluid Mixing Driven by Shock Wave // Physics of Fluids, 1997, v.9, №4, p.1106-1124.

5. O. Sadot, L. Erez, U. Alon, D. Oren, L.A. Levin. Study of Nonlinear Evolution of Singlemode and Two-bubble Interaction under Richtmyer–Meshkov Instability // Physical Review Letters, 1998, v.80, №8, p.1654-1657.

6. G.C. Orlicz, S. Balasubramanian, K.P. Prestridge. Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer // Physics of Fluids, 2013, №25, 114101.

7. B.D. Collins, J.W. Jacobs. PLIF Flow Visualization and Measurements of the Richtmyer–Meshkov Instability of an air/SF6 Interface // Journal of Fluid Mechanics, 2002, v.464, p.113-136.

8. B.E. Motl. Experimental Parameter Study of the Richtmyer–Meshkov Instability. - Madison: University of Wisconsin, 2008, PhD Thesis.

9. E. Leinov, G. Malamud et al. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions // Journal of Fluid Mechanics, 2009, v.626, p.449–475.

10. J.-F. Haas, B. Sturtevant. Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities // Journal of Fluid Mechanics, 1987, v.181, p.41-76.

11. D.A. Holder et al. Shock-Tube Experiments on Richtmyer–Meshkov Instability Growth Using an Enlarged Double Bump Perturbation // Laser and Particle Beams, 2003, v.21, №3, p.411-418.

12. R. Abgrall. How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach // J. of Comp. Physics, 1996, v.125, №1, p.150-160.

13. M. Latini, O. Schiling, W.S. Don. High-resolution Simulations and Modeling of Reshocked Single-mode Richtmyer–Meshkov Instability: Comparison to Experimental Data and to Amplitude Growth Model Predictions // Physics of Fluids, 2007, v.19, №2, 024104.

14. M. Latini, O. Schiling, W.S. Don. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability // Journal of Computational Physics, 2007, v.221, p.805–36.

15. V.F. Tishkin, V.V .Nikishin, I.V. Panov, A.P. Favorskii. Raznostnye skhemy trekhmernoi gazovoi dinamiki dlia zadach o razvitii neustoichivosti Rikhrmaera–Meshkova // Mathematicheskoe modelirovanie, 1995, t.7, №5, s.15-25.

16. P. Movahed, E. Johnsen, Numerical simulations of the Richtmyer-Meshkov instability with reshock / 2011. Honolulu: 20th AIAA Computational Fluid Dynamics Conference.

17. P. Movahed, E. Johnsen. A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer–Meshkov instability // Journal of Computational Physics, 2013, v.239, p.166-186.

18. V.K. Tritschler, X.Y. Hu, S. Hickel, N.A. Adams. Numerical simulation of a Richtmyer–Meshkov instability with an adaptive central-upwind sixth-order WENO scheme // Physica Scripta, 2013, v.155, 014016.

19. S. Ukai, K. Balakrishnan, S. Menon. Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock // Shock Waves, 2011, v.21, p.533-546.

20. A. Yosef-Hai, O. Sadot et al. Late-time growth of the Richtmyer–Meshkov instability for different Atwood numbers and different dimensionalities // Laser and Particle Beams, 2003, v.21, p.363–368.

21. J.T. Morán-López. Multicomponent Reynolds-Averaged Navier–Stokes Modeling of Reshocked Richtmyer–Meshkov Instability-Induced Turbulent Mixing Using the Weighted Essentially Nonoscillatory Method / Ann Arbor: Univ. of Michigan, 2013, PhD Thesis.

22. K.R. Bates, N. Nikiforakis, D. Holder. Richtmyer–Meshkov Instability Induced by the Interaction of a Shock Wave with a Rectangular Block of SF6 // Physics o Fluids, 2007, v.19, 036101.

23. R.S. Lagumbay , Modeling and Simulation of Multiphase/Multicomponent Flows. - Boulder: University of Colorado, 2006, PhD Thesis.

24. V.M. Goloviznin, A.A. Samarskii. Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rashchepleniem vremmennoi proizvodnoi // Matematicheskoe modelirovanie, 1998, t.10, №1, s.86–100.

25. V.M. Goloviznin, A.A. Samarskii. Nekotorye svoistva raznostnoi skhemy Kabare // Matematicheskoe modelirovanie, 1998, t.10, №1, s.101–116.

26. V.M. Goloviznin, S.A. Karabasov. Nelineinaia korrektsiia skhemy Kabare // Matematicheskoe modelirovanie, 1998, t.10, №12, s.107–123.

27. V.M. Goloviznin, S.A. Karabasov, I.M. Kobrinskii. Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi // Matematicheskoe modelirovanie, 2003, t.15, №9, s. 29-48.

28. V.M. Goloviznin. Balansno-kharakteristichskii metod chislennogo resheniia odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh // Matematicheskoe modelirovanie, 2006, t.18, №11, s.14-30.

29. V.M. Goloviznin, V.N. Semenov, I.A. Korotkin, S.A. Karabasov. A novel computational method for modelling stochastic advection in heterogeneous media // Transport in Porous Media, 2007, v. 66, №3, p.439-456.

30. A.V. Danilin, A.V. Solovjev. A Modification of the CABARET Scheme for the Computation of Multicomponent Gaseous Flows // Numerical Methods and Programming, 2015, v.16, p.18-25.

31. A.V. Danilin, A.V. Solovjev, A.M. Zaitsev. A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains // Numerical Methods and Programming, 2015, v.16, p.436-445.

Система Orphus

Loading...
Up