Evolution of the diffusion-induced flow over a disk, submerged in a stratified viscous fluid

 
PIIS023408790001927-3-1
Publication type Article
Status Published
Authors
Affiliation: Institute for Computer Aided Design of RAS, Moscow
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 11
Pages44-58
Abstract

In the present paper the results of mathematical modeling of the evolution of the 3D diffusion- induced flow over a disk (with diameter d and thickness H = 0.76·d), immersed in a linearly density stratified incompressible viscous fluid (described by the Navier-Stokes equations in the Boussinesq approximation), are shown. The disk rests at the level of the neutral buoyancy (which coincides with its axis of symmetry z) and disturbs the homogeneity of the background diffusion flux in the fluid, forming a complex system of the slow currents (gravitational internal waves). Over time, two thin horizontal convection cells are formed at the upper and lower parts of the disk, stretching parallel to the z axis and adjacent to the base cell with thickness d/2. For the first time the fundamental mechanism for the formation of each new half-wave near the vertical axis x (passing through the center of the disk) during half the buoyancy period of the fluid Tb is analyzed in detail. This mechanism is based on gravitational instability. The beginning of this instability was fixed at 0.473·Tb at a height of 3.9·d above the center of the disk. The same mechanism is also realized over the place where the body moves in the horizontal direction. The 3D vortex structure of the flow is visualized by the isosurfaces of the imaginary part of the conjugate eigenvalues of the velocity gradient tensor. The method SMIF with an explicit hybrid finite difference scheme for the approximation of the convective terms of the equations (second-order approximation, monotonicity), which has proved itself over the past 30 years, is used for the mathematical modeling.

Keywordsstratified viscous fluid, diffusion, internal waves, crest, trough, convective cell, disk, visualization, 3D vortex structure, mathematical modeling
Received09.11.2018
Publication date21.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 937

Readers community rating: votes 0

1. L. Prandtl, O. Tietjens. Hydro- und Aeromechanik (Bd. 1 & 2). – Berlin, Springer, 1929&1931, 335&245 p.

2. V.G. Bajdulov, Yu.D. Chashechkin. Pogranichnye techeniya, indutsirovannye diffuziej okolo nepodvizhnogo gorizontal'nogo tsilindra v nepreryvno stratifitsirovannoj zhidkosti // Izvestiya AN. Fizika atmosfery i okeana, 1996, t.32, №6, s.818–823;

3. V.G. Bajdulov, P.V. Matyushin, Yu.D. Chashechkin. Struktura techeniya, indutsirovannogo diffuziej okolo sfery v nepreryvno stratifitsirovannoj zhidkosti // Doklady AN, 2005, t.401, №5, s.613–618;

4. V.G. Bajdulov, P.V. Matyushin, Yu.D. Chashechkin. Ehvolyutsiya techeniya, indutsirovannogo diffuziej na sfere, pogruzhennoj v nepreryvno stratifitsirovannuyu zhidkost' // Izv. RAN. Mekhanika zhidkosti i gaza, 2007, №2, s.130–143;

5. M.R. Allshouse, M.F. Barad, T. Peacock. Propulsion generated by diffusion-driven flow // Nature Physics, 2010, v.6, p.516–519.

6. M.A. Page. Fluid dynamics: Propelled by diffusion // Nature Physics, 2010, v.6, p.486–487.

7. M.J. Mercier, A.M. Ardekani, M.R. Allshouse, B. Doyle, T. Peacock. Self-propulsion of immersed objects via natural convection // Phys. Rev. Lett., 2014, v.112, 204501(5).

8. N.F. Dimitrieva, Yu.D. Chashechkin. Struktura indutsirovannykh diffuziej techenij na kline s iskrivlennymi granyami // Morckoj gidrofizicheskij zhurnal, 2016, №3, s.77–86;

9. O.M. Belotserkovskij, V.A. Guschin, V.N. Kon'shin. Metod rasschepleniya dlya issledovaniya techenij stratifitsirovannoj zhidkosti so svobodnoj poverkhnost'yu // ZhVM i MF, 1987, t.27, №4, s.594–609;

10. P.V. Matyushin. Chislennoe modelirovanie prostranstvennykh otryvnykh techenij odnorodnoj neszhimaemoj vyazkoj zhidkosti okolo sfery. Diss…kand. f.-m. n. – M.: 2003, 194 s;

11. P.V. Matyushin. Ehvolyutsiya techeniya stratifitsirovannoj vyazkoj zhidkosti pri nachale dvizheniya tela // Nauchnyj zhurnal «Protsessy v geosredakh», 2016, №4 (9), s.333-343;

12. M.S. Chong, A.E. Perry, B.J. Cantwell. A general classification of three-dimentional flow field // Phys. Fluids, 1990, v.A2, p.765–777.

13. V.A. Guschin, P.V. Matyushin. Mekhanizmy formirovaniya vikhrej v slede za sferoj pri 200 < Re < 380 // Izv. RAN. Mekh. zhidkosti i gaza, 2006, №5, s.135–151;

14. V.A. Guschin, P.V. Matyushin. Matematicheskoe modelirovanie i vizualizatsiya transformatsii vikhrevoj struktury techeniya okolo sfery pri uvelichenii stepeni stratifikatsii zhidkosti // ZhVMiMF, 2011, t.51, № 2, s.268–281;

15. P.V. Matyushin. Klassifikatsiya rezhimov techenij stratifitsirovannoj vyazkoj zhidkosti okolo diska // Nauchnyj zhurnal «Protsessy v geosredakh», 2017, №4 (13), s.678–687;

16. V.A. Guschin, P.V. Matyushin. Modelirovanie i issledovanie techenij stratifitsirovannoj zhidkosti okolo tel konechnykh razmerov // ZhVMiMF, 2016, t.56, №6, s.1049–1063;

17. V.A. Gushchin, A.V. Kostomarov, P.V. Matyushin. 3D Visualization of the Separated Fluid Flows // J. of Visualization, 2004, v.7, №2, p.143–150.

18. V.A. Guschin, P.V. Matyushin. Matematicheskoe modelirovanie prostranstvennykh techenij neszhimaemoj zhidkosti // Matemat. modelirovanie, 2006, t.18, №5, s.5–20;

19. V.A. Guschin, P.V. Matyushin. Klassifikatsiya rezhimov otryvnykh techenij zhidkosti okolo sfery pri umerennykh chislakh Rejnol'dsa // Matematicheskoe modelirovanie: problemy i rezul'taty. – M.: Nauka, 2003, s.199–235;

20. P.V. Matyushin. The vortex structures of the 3D separated stratified fluid flows around a sphere // Selected Papers of the International conference «Fluxes and Structures in Fluids - 2007» (July 2-5, 2007, St. Petersburg, Russia). Ed.: Yu.D. Chashechkin, V.G. Baydulov. – M.: IPMech RAS, 2008, p.139–145.

Система Orphus

Loading...
Up