Simulation of the process of carbon nanotubes system self-organization

 
PIIS023408790001225-1-1
DOI10.31857/S023408790001225-1
Publication type Article
Status Published
Authors
Affiliation: Moscow Institute of Physics and Technology
Address: Russian Federation, Moscow
Affiliation: Kintech Lab Ltd
Address: Russian Federation, Moscow
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 9
Pages100-110
Abstract

In this work we developed a coarse grained numerical model for simulation of a selforganization process of carbon nanotubes system under applied electric field. The model describes polarization of nanotubes in the system with electric field and also includes Van der Waals interaction between nanotubes. We developed an iterative algorithm of particle charge calculation in nanotube that provides a significant speedup of the calculation. Another advantage of this algorithm is better scaling of the calculation time as a function of system size. The results of the model application for calculation of selforganization process dynamics of carbon nanotubes are demonstrated.

Keywordscoarse grained modeling, coulomb interaction, self-organization, carbon nanotubes
Received28.09.2018
Publication date04.10.2018
Number of characters633
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1513

Readers community rating: votes 0

1. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites // Polymer, 2005, №46, s.877-886.

2. C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise, G. Sauti, P.T. Lillehei, J.C. Harrison. Aligned single-wall carbon nanotube polymer composites using an electric field // Polymer Physics, 2006, №44, c.1751-1762.

3. Chen Lin and Jerry W. Shan. Electrically tunable viscosity of dilute suspensions of carbon nanotubes // Physics of Fluids, 2007, №19.

4. Cunjiang Yu, Charan Masarapu, Jiepeng Rong, Bingqing Wei and Hanqing Jiang. Stretchable Supercapacitors Based on Buckled Single-Walled Carbon-Nanotube Macrofilms // Advanced Materials, 2009, № 21, s.4793-4797.

5. Thomas Rueckes, Kyoungha Kim, Ernesto Joselevich, Greg Y. Tseng, Chin-Li Cheung, Charles M. Lieber. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing // Science, №289, s.94-97.

6. Zhao Wang, Michel Devel, Rachel Langlet, and Bernard Dulmet. Electrostatic deflections of cantilevered semiconducting single-walled carbon nanotubes // Physical Review B., 2007, №75.

7. Zhao Wang and Michel Devel. Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model // Physical Review B., 2007, №76.

8. A.I. Oliva-Avile´s, F. Avile´s, V. Sosa, G.D. Seidel. Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields // Carbon, 2014, № 69, s.342-354.

9. G. Belijar, Z. Valdez-Nava, S. Diaham, L. Laudebat, T. B. Jones and T. Lebey. Dynamics of particle chain formation in a liquid polymer under an electric field: modeling and experiments // Journal of Physics D: Applied Physics, 2017, №50.

10. Daan Frenkel. Understanding Molecular Simulation // Academic press, A Division of Harcourt, c.292-300.

11. L.A. Girifalco. Interaction potential for carbon (C60) molecules // The Journal of Physical, 1991, №95, s.5370-5371.

12. Erik Bitzek, Pekka Koskinen, Franz Gahler, Michael Moseler, Peter Gumbsch. Structural Relaxation Made Simple // Physical Review Letters, №97.

Система Orphus

Loading...
Up