views: 1767
Readers community rating: votes 0
1. Jun-Gang Wang, Yan Li, Yu-Hong Ran, Convergence of Chebyshev type regularization method under Morozov discrepancy principle // Appl. Math. Lett., 2017, v.74, p.174–180.
2. Belov A.A., Kalitkin N.N. Processing of Experimental Curves by Applying a Regularized Double Period Method // Doklady Math., 2016, v.94:2, p.539–543.
3. Belov A.A., Kalitkin N.N. Regularization of the Double Period Method for Experimental Data Processing // Comp. Math. and Math. Phys., 2017, v.57:11, p.1741–1750.
4. Bakushinsky A.B., Smirnova A. Irregular operator equations by iterative methods with undetermined reverse connection // J. Inv. Ill-Posed Problems, 2010, v.18, p.147–165.
5. Bakushinsky A.B., Smirnova A. Discrepancy principle for generalized GN iterations combined with the reverse connection control // J. Inv. Ill-Posed Problems, 2010, v.18, p.421–431.
6. Jian-guo Tang. An implicit method for linear ill-posed problems with perturbed operators // Math. Meth. in the Appl. Sci., 2006, v.29, p.1327–1338.
7. Leonov A.S. Reshenie nekorrktno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i deomnstratsii v MATLAB. M.: Librokom. 2010.
8. Tikhonov A.N., Goncharskii A.V., Stepanov V.V., Iagola A.G. Chislennye metody resheniia nekorrektnykh zadach. M.: Nauka, 1990.
9. Gaponenko Iu.L. On the degree of decidability and the accuracy of the solution of an ill-posed problem for a fixed level of error // USSR Comp. Math. and Math. Phys., 1984, v.24, p.96–101.
10. Gaponenko Yu.L. The accuracy of the solution of a non-linear ill-posed problem for a finite error level // USSR Comp. Math. and Math. Phys., 1985, v.25, p.81–85.
11. Hon Y. C., Wei T. Numerical computation of an inverse contact problem in elasticity // J.Inv. Ill-Posed Problems, 2006, v.14, p.651–664.
12. Ben Ameur H., Kaltenbacher B. Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators // J. Inv. Ill-Posed Problems, 2002, v.10, p.561–583.
13. Samarskii A.A., Vabishchevich P.N. Raznostnye skhemy dlia neustoichevykh zadach // Mat. Modelirovanie, 1990, t.2:11, s.89–98.
14. Samarskii A.A. Regularization of difference schemes // USSR Comp. Math. and Math. Phys., 1967, v.7, p.79–120.
15. Bakushinskii A.B., Leonov A.S. Novye aposteriornye otsenki tochnosti dlia priblizhennykh reshenii nereguliarnykh operatornykh uravnenii // Vych. met. programmirovanie, 2014, v.15:2, p.359–369.
16. Bakushinsky A.B., Smirnova A., Hui Liu. A posteriori error analysis for unstable models // J. Inv. Ill-Posed Problems, 2012, v.20, p.411–428.
17. Klibanov M.V., Bakushinsky A.B., Beilina L. Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess // J. Inv. Ill-posed Problems, 2011, v.19, p.83–105.
18. Goncharskii A.V., Leonov A.S., Yagola A.G. A generalized discrepancy principle // USSR Comp. Math. and Math. Phys., 1973, v.13, p.25–37.
19. Richardson L.F., Gaunt J.A. The deferred approach to the limit // Phil. Trans., 1927, A. v.226, p.299–349.
20. Riaben'kii V.S., Fillipov A.F. Ob ustoichivosti raznostnykh uravnenii. Gosudarstvennoe izd-vo tekhniko-teoretichskoi literatury, 1956.
21. Tikhonov A.N., Arsenin V.Ya. Solutions of ill-posed problems. New York: Halsted, 1977.
22. Kalitkin N.N., Alshin A.B., Alshina E.A., Rogov B.V. Vychisleniia na kvaziravnomernykh setkah. М.: Fizmatlit, 2005.
23. A.A. Samarskii. The theory of difference schemes. – New York – Basel, Marcel Dekker, Inc, 2001, p.761.
24. Rautian S.G. Realnye spectralnye pribory // UFN, 1958, t.66:3, s.475–517.