Interaction of static hydraulic fracture under constant fluid pressure with natural fracture

 
PIIS023408790000576-7-1
DOI10.31857/S023408790000576-7
Publication type Article
Status Published
Authors
Affiliation: Federal Scientific Center Scientific-Investigative Institute of System Investigations of Russian Academy of Science
Address: Russian Federation, Moscow
Affiliation: Federal Scientific Center Scientific-Investigative Institute of System Investigations of Russian Academy of Science
Address: Russian Federation
Affiliation:
Federal Scientific Center Scientific-Investigative Institute of System Investigations of Russian Academy of Science
Lomonosov Moscow State University
Address: Russian Federation
Affiliation:
Federal Scientific Center Scientific-Investigative Institute of System Investigations of Russian Academy of Science
Lomonosov Moscow State University
Address: Russian Federation
Affiliation: Lomonosov Moscow State University
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 7
Pages79-92
Abstract

In this article, the mathematical model of static hydraulic fracture under constant fluid pressure interaction with natural fracture is created. The model describes mechanisms natural fracture opening and closing and its frictional sliding. Also, the parametric study of the secondary hydraulic fracture initiation at the natural fracture is performed, and the point of this re-initiation is found. For the first time not only qualitative, but also quantitative evaluation of possibility and point of the fracture re-initiation is done. The comparison of obtained results with the results of fully coupled model, including quasi-static fracture propagation and fluid flow inside it is performed. This comparison shown that the created static model is really applicable to the prediction of hydraulic fracture reinitiation at the natural fracture.

Keywordsfissure fracture, simulation of interaction of cracks
Received25.09.2018
Publication date27.09.2018
Number of characters831
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1457

Readers community rating: votes 0

1. A.A. Chirkii, I.I. Matichin. O lineinykh konfliktno upravliaemykh protsessakh s drobnymi proizvodnymi. Trudy instituta matematiki i mekhaniki UrO RAN, 2011, t.17, №2, c. 256-270.

2. D. Ingman, J. Suzdalnitsky. Control of damping oscillations by fractional differential operator with time-dependent order // Comput. Methods Appl. Mech. Engrg., 2004, 193, p.5585-5595.

3. D. Ingman, J. Suzdalnitsky. Iteration method for equation of viscoelastic motion with fractional differential operator of damping // Comput. Methods Appl. Mech. Engrg., 2001, 190, p.5027-5036.

4. G.K. Koh, J. Kelly. Application of fractional derivatives to seismic analysis of base-isolated models // Earthquake engineering and structural dynamics, 1990, v.19, p.229-241.

5. Gh.E. Draganescu, N. Cofan, D.L. Rujan. Nonlinear vibrations of a nano-sized sensor with fractional damping // J. Optoelectron. Adv. Mater., 2005, v.7, №2, p.877-884.

6. A. Fenlander. Modal synthesis when modeling damping by use of fractional derivatives. AIAA J., 1996, 34 (5), p.1051-1058.

7. R.P. Meilanov, M.S. Ianpolov. Osobennosti fazovoi traektorii fraktalnogo ostsilliatora. Pisma v ZhTF, 2002, t. 28, v.1, s.38-44.

8. S.G. Samko, A.A. Kilbas, O.I. Marichev. Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia. – Minsk: Izd-vo "Nauka i tekhnika", 1987, 688 s.

9. R.L. Bagley, P.J. Torvik. A thoretical basis for the application of fractional calculus to viscoelasticity // J. Rheolog., 1983, v.27, №3, p.201-203.

10. R.L. Bagley, P.J. Torvik. Fractional calculus – a different approach to the analysis of viscoelastically damped structures // AIAA Journal, 1983, v.21, №5, p.741-748.

11. B. Ibrahim, Q. Dong, Z. Fan. Existence for boundary value problems of two-term Caputo fractional differential equations // J. of nonlinear sciences and appl., 2017, p.511-520.

12. E.R. Kekharsaeva, V.G. Pirozhkov. Modelirovanie izmeneniia deformatsionno-prochnostnykh kharakteristik asfaltobetona pri nagruzhenii s pomoshchiu drobnogo ischisleniia. / Sbornik trudov 6-i vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem im. I.F. Obraztsova i Iu.G. Ianovskogo "Mekhanika kompozitsionnykh materialov i konstruktsii, slozhnykh i geterogennykh sred". – M.: IPRIM RAN, 2016, s.104-109.

13. C.M.A. Vasques, R.A.S. Moreira, J.Dias Rodrigues. Experimental identification of GHM and ADF parameters for viscoelastic damping modeling. III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 2006.

14. V.A. Ditkin, A.P. Prudnikov. Integralnye preobrazovaniia i operatsionnoe ischislenie. – M.: Nauka, 1974, 542 s.

15. S.V. Erokhin, T.S. Aleroev, L.Iu. Frishter. Zadacha Shturma-Liuvillia dlia uravneniia ostsilliatora s viazkouprugim dempfirovaniem // International Journal for Computational Civil and Structural Engineering, 2015, v.11, Issue 3, 2015, p.77-81.

16. E.R. Kekharsaeva, T.S. Aleroev. Model deformatsionno-prochnostnykh kharakteristik khlorosoderzhashchikh poliefirov na osnove proizvodnykh drobnogo poriadka // Plasticheskie massy, 2001, №3, s.35.

17. V.A. Man'kovskii, V.T. Sapunov. Nomograficheskie svoistva drobno-eksponentsial'noi Efunktsii pri opisanii lineinoi viazkouprugosti // Zavodskaia laboratoriia. Diagnostika materialov, 2000, №3, t.66, s.45-50.

Система Orphus

Loading...
Up