les-simulation of heat transfer in a turbulent pipe flow With lead coolant at different Reynolds numbers

 
PIIS023408790000573-4-1
DOI10.31857/S023408790000573-4
Publication type Article
Status Published
Authors
Affiliation: JSC “NIKIET”
Address: Russian Federation, Moscow
Affiliation: NSI RAS
Address: Russian Federation
Affiliation: NSI RAS
Address: Russian Federation
Journal nameMatematicheskoe modelirovanie
EditionVolume 30 Number 7
Pages29-46
Abstract

In this paper, the numerical simulation of turbulent heat transfer in a circular pipe was performed in a wide range of Reynolds numbers using nonparametric MILES-method CABARET on grids with an incomplete resolution of the turbulence spectrum, as well as with the use of the STAR-CCM+ code in a LES-approximation. The calculation results was compared with the DNS calculations by other authors found in literature, as well as with the RANS-calculations performed in the STAR-CCM+ code. The simulation showed a satisfactory accuracy in determining average, rms and integral characteristics of the flow, and revealed drawbacks in the existing model relations describing the local properties of turbulence. The authors have proposed a wall-bounded thermal function, which might be implement in the RANS-approximations.

Keywordslarge eddy simulation, CABARET scheme, turbulent heat transfer, liquidmetal coolant
Received25.09.2018
Publication date27.09.2018
Number of characters776
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1655

Readers community rating: votes 0

1. Garbaruk A.V. Modelirovanie turbulentnosti v raschetakh slozhnykh techenii: uchebnoe posobie / A.V. Garbaruk, M.Kh. Strelets, M.L. Shur – SPb: Izd-vo Politekhn. universiteta, 2012, 88 s.

2. Grotzbach G., Carteciano L.N. Validation of turbulence models in the computer code FLUTAN for free hot sodium jet in different buoyancy flow regimes // Forschugszentrum Karlsruhe GmbH, Karlsruhe, FZKA 6600, C 2003, 34 p.

3. Wolters J. Benchmark Activity on the TEFLU Sodium Jet Experiment // Forschungszentrum Jülich GmbH, FZJ, C 2002, 66 p.

4. Oran E.S., Boris J.P. Numerical Simulation of reactive flow. 2001: Cambridge University Press.

5. Grinstein F.F., Margolin L.G., Rider W.J. Implicit Large Eddy Simulation. 2007: Cambridge University Press.

6. Boris J.P. et al. New insights into large eddy simulation // Fluid Dynamics Research, 1992, 10(4-6), p.199-228.

7. Goloviznin V.M. i dr. Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh kompleksov. M.: Izdatelstvo Mosk. universiteta, 2013, 472 s.

8. Goloviznin V.M., Karabasov S.A. Nelineinaia korrektsiia skhemy KABARE // Matematicheskoe modelirovanie, 1998, t.10, №12, s.107-123.

9. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor Flow // Turbulence and Combustion, 1999, t.62, p.183-200

10. Shih T.H., Liou W.W., Shabbir A., Yang Z. and Zhu J. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent FlowsModel Development and Validation // Computers Fluids, 1995, 24(3): 227-238.

11. User Guide. Star-CCM+ Version 10.02 – CD-adapco, 2015.

12. Van Leer B. Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method // J. Com. Phys., 1979, 32, p.101–136.

13. Khoury G.K.E. et al. Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers // Flow Turbulence Combust, 2013, t.91, p.475-495.

14. Anderson D., Tannekhill D., Pletcher R. Computation Fluid Mechanics and Heat Transfer / CRC Press, 2012, p.774.

15. Baglietto E. 22.315 Applied Computation Fluid Dynamics and Heat Transfer. Lecture 20. Spring 2016, NSE, MIT.

16. Subbotin V.I., Ushakov P.A. Teploobmen pri techenii zhidkikh metallov v trubakh // Inzhenerno-fizicheskii zhurnal, 1963, 6(4): s.16-20

17. Kirillov P.L., Iurev Iu.S., Bobkov V.P. Spravochnik po teplogidravlicheskim raschetam (Iadernye reaktory, teploobmenniki, parogeneratory). M.: Energoatomizdat, 1990, 360 s.

18. Grotzbach G. Challenges in low-Prandtl number heat transfer simulation and modelling // Nuclear Engineering and Design, 2013, t.264, p.41-55.

19. Groshev A.I., Slobodchuk V.I. Vliianie turbulentnogo chisla Prandtlia na teploobmen v trubakh // FEI-1463. Obninsk: FEI, 1983, 22 s.

Система Orphus

Loading...
Up