PIIS002342060002487-3-1
DOI10.31857/S002342060002487-3
Publication type Article
Status Published
Authors
 
Affiliation:
Address: Russian Federation, Troitsk
Affiliation: The Russian Space Research Institute
Address: Russian Federation, Moscow
Affiliation: The Russian Space Research Institute
Address: Russian Federation, Moscow
Journal nameKosmicheskie issledovaniia
EditionVolume 56 Issue 6
Pages410-419
Abstract

      

Keywords
Received19.12.2018
Publication date25.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 930

Readers community rating: votes 0

1. Akasofu S.-I. Solar-wind disturbances and the solar wind-magnetosphere energy coupling function // Solar Space Sci. Rev. 1983. V. 34. P.173–183.

2. Perreault P. and Akasofu S.-I. A study of geomagnetic storms // Geophys. J. Int. 1978. V. 54. P. 547-573. doi:10.1111/j.1365-246X.1978.tb05494.x

3. Burton R. K., McPherron R. L., Russell C. T. An empirical relationship between interplanetary conditions and Dst // J. Geophys. Res. 1975. V. 80. P. 4204–4214.

4. Kane R.P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? // J. Geophys. Res. 2007. V. 110. doi: 10/1029/2004JA010799

5. Smart D.F., Garrett N.B., Shea M.A. The prediction of AE, ap, Dst at time lags between 0 and 30 hours // Solar-terrestrial predictions proceedings. 1980. V. 2. P. 399–414.

6. Maezawa K., Nishida A. Inferences of solar wind velocity from geomagnetic indices // J. Geomag. and Geoelectr. 1978. V. 30. P. 205–205.

7. Crooker N.V., Feynman J., Gosling J.T. On the high correlation between long-term averages of solar wind speed and geomagnetic activity // J. Geophys. Res. 1977. V. 82. P. 1933–1937.

8. Newell P. T., Sotirelis T., Liou K., et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables // J. Geophys. Res. 2007. V. 112. A01206. doi:10.1029/2006JA012015

9. Kan J. R., Lee L. C. Energy coupling function and solar wind-magnetosphere dynamo // Geophys. Res. Lett. 1979. V. 6. P. 577–580.

10. Hardy D. A., Burke W. J., Gussenhoven M. S., et al. DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to the solar wind velocity and north-south component of the interplanetary magnetic field // J. Geophys. Res. 1981. V. 86. P. 9961.

11. Holzer R. E., Slavin J. A. An evaluation of three predictors of geomagnetic activity // J. Geophys. Res. 1982. V. 87. N A4. P. 2558–2562.

12. Wygant J. R., Torbert R. B., Mozer F. S. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection // J. Geophys. Res. 1983. V. 88. P. 5727–5735.

13. Borovsky, J. E., Birn J. The solar wind electric field does not control the dayside reconnection rate // J. Geophys. Res. Space Physics. 2014. V. 119. doi:10.1002/2013JA019193

14. Borovsky J. E. Canonical correlation analysis of the combined solar-wind and geomagnetic- index data sets // J. Geophys. Res. 2014. V. 119. doi: 10.1002/2013JA019607

15. Borovsky J. E. The rudiments of a theory of solar-wind/magnetosphere coupling derived from first principles // J. Geophys. Res. 2008. V. 113. A08228. doi:10.1029/2007JA012646

16. Borovsky J. E. Physical improvements to the solar-wind reconnection control function for the Earths magnetosphere // J. Geophys. Res. Space Physics. 2013. V. 118. P. 2113–2121. doi:10.1002/jgra.50110

17. Borovsky J. E. Physics based solar-wind driver functions for the magnetosphere: Combining the reconnection-coupled MHD generator with the viscous interaction // J. Geophys. Res. Space Physics. 2013. V. 118. P. 7119–7150. doi:10.1002/jgra.50557

18. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origion of geomagnetic storms// Space Sci. Rev .1999. V. 88. P. 529–562.

19. Huttunen K. E. J., Koskinen H. E. J. Importance of postshock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity // Ann. Geophys. 2004. V. 22. P. 1729-1738. doi:10.5194/angeo- 22-1729-2004

20. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномас- штабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. 2009. Т. 47. № 2. С. 99–113. (Cosmic Research. P. 81–94).

21. Borovsky J. E., Denton M.H. Differences between CME-Driven Storms and CIR-Driven Storms // J. Geophys. Res. 2006. V. 28. P. 121–190.

22. Huttunen K.E.J., Koskinen H.E.J., Karinen A., Mursula K. Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions // Geophys. Res. Lett. 2006. V.

23. L06107. doi: 10.1029/2005GL024894 23. Pulkkinen T. I., Partamies N., Huttunen K. E. J., et al. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions // Geophys. Res. Lett. 2007. V. 34. L02105. doi:10.1029/2006GL027775

24. Turner N.E., Cramer W.D., Earles S.K., Emery B.A. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms // J. Atmosph. Sol. Terrest. Phys. 2009. V. 71. P. 1023–1031.

25. Longden N., Denton M.H., Honary F. Particle precipitation during ICME_driven and CIR_driven geomagnetic storms // J. Geophys. Res. 2008. V. 113. A06205. doi:10.1029/2007JA012752

26. Yermolaev Y. I., Nikolaeva N. S., Lodkina I. G., Yermolaev M. Y. Geoeffectiveness and efficiency of CIR, sheath and ICME in generation of magnetic storms. // J. Geophys. Res. 2012. V. 117. A00L07. doi:10.1029/2011JA017139

27. Nikolaeva N. S., Yermolaev Y. I., Lodkina I. G. Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream // Adv. Space Res. 2015. doi: doi. org/10.1016/j.asr.2015.06.029

28. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M. Y.. Specific interplanetary conditions for CIR-, Sheath-, and ICMEinduced geomagnetic storms obtained by double superposed epoch analysis // Ann. Geophys. 2010. V. 28. P. 2177–2186. doi:10.5194/ angeo-28-2177-2010

29. Plotnikov I. Y., Barkova E. S. Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds // Adv. Space Res. 2007.V. 40. P. 1858–1862.

30. Despirak I.V., Lubchich A.A., Yahnin A.G. et al. Development of substorm bulges during different solar wind structures // Ann. Geophys. 2009. V. 27. № 5. P. 1951–1960.

31. McPherron R.L., Kepko L., Pulkkinen T.I. et al. Changes in the response of the AL Index with solar cycle and epoch within a corotating interaction region // Ann. Geophys. 2009. V. 27. P. 3165–3178.

32. Boroyev R.N., Vasiliev M.S. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events // Adv. Space Res. 2018. V. P. 348–354. doi:org/10.1016/j.astr.2017.10.031

33. Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Зависимость геомагнитной активности во время магнитных бурь от параметров солнеч- ного ветра для разных типов течений // Ге- омагнетизм и Аэрономия. 2011. Т. 51. № 1. С. 51–67.

34. Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Зависит ли генерация магнитной бури от типа солнечного ветра? // Геомагнетизм и Аэрономия. 2017. Т. 57. V. № 25 С. 555–561.

35. Despirak I., Lubchich A., Kleimenova N. High-latitude magnetic substorms under different types of the solar wind large-scale structure // Sun and Geosphere. 2018. 13/1. P. 57–61.

36. King J. H., Papitashvili N. E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. 2005. V. 110. A02104. doi:10.1029/ 2004JA010649

37. Yermolaev Y. I., Lodkina I. G., Nikolaeva N. S., Yermolaev M. Y. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis // J. Geophys. Res. 2015. V. 120. doi:10.1002/2015JA021274.

38. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S. et al. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta // Solar Phys. 2017. V. 292. P. 193. doi:10.1007/s11207-017-1205-1

39. Temerin M., Li X. Dst model for 1995-2002 // J. Geophys. Res. 2006. V. 111. A04221. doi:10.1029/2005JA011257.

40. Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Моделирование временного хода Dst индекса на главной фазе магнитных бурь, генерированных разными типами солнеч- ного ветра // Космич. исслед. 2013. Т. 51. № 6. С. 1–12. (Cosmic Research. P. 401–412).

41. Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Моделирование временного хода корректированного Dst* индекса на главной фазе магнитных бурь, генерированных разными типами солнечного ветра // Космич. исслед. 2015. Т. 53. № 2. С. 126–135. (Cosmic Research. P. 119–127).

Система Orphus

Loading...
Up