Моделирование магнитных диполизаций и турбулентности в хвосте магнитосферы Земли как факторов ускорения и переноса плазмы

 
Код статьиS002342060002494-1-1
DOI10.31857/S002342060002494-1
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация:
Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова
Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация:
Физический факультет МГУ им. М. Ломоносова
Национальный исследовательский университет «Высшая школа экономики»
Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация: Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация: Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация: Институт космических исследований РАН
Адрес: Российская Федерация, Москва
Аффилиация:
Max Planck Institute for Solar System Research, Göttingen
Ludwig Maximilian University of Munich, Munich
Адрес: Германия
Название журналаКосмические исследования
ВыпускТом 56 Номер 6
Страницы440-450
Аннотация

Работа посвящена исследованию процессов ускорения частиц плазмы в процессе магнитных диполизаций в токовом слое магнитосферного хвоста Земли. Построена численная модель, позволяющая оценивать ускорение частиц в трех возможных сценариях: (A) собственно диполизации; (B) прохождения множественных диполизационных фронтов; (C) прохождения фронтов с последующими высокочастотными электромагнитными колебаниями. Получены энергетические спектры ускоренных частиц трех сортов: ионов водорода H+, кислорода O+ и электронов e–. Показано, что на разных временных масштабах в сценариях (A) – (C) происходит преимущественное ускорение разных популяций частиц. Так, ионы кислорода наиболее эффективно ускоряются в процессе однократной диполизации (A), протоны (и, в некоторой степени, электроны) – в сценарии (B), в то время как сценарий (C) оказывается наиболее эффективным для ускорения электронов. Показано, что учет высокочастотных электромагнитных флуктуаций, сопровождающих магнитную диполизацию, может объяснить появление потоков частиц с энергиями порядка сотен кэВ в хвосте магнитосферы Земли.

Ключевые слова
Получено19.12.2018
Дата публикации25.12.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 936

Оценка читателей: голосов 0

1. Sharma A.S., Nakamura R., Runov A. et al. Transient and localized processes in the magnetotail: a review // Ann. Geophys. 2008. V. 26. P. 1–51.

2. Retino A., Nakamura R., Vaivads A. et al. Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the Earth’s magnetotail // J. Geophys. Res. Space Physics. 2008. V. 113. P. A12215.

3. Yamada M., Kulsrud R., Ji H. Magnetic reconnection // Rev. Mod. Phys. 2010. V. 82. P. 603–664.

4. Delcourt D.C., Pedersen A., Sauvaud J.A. Dynamics of single-particle orbits during substorm expansion phase // J. Geophys. Res. 1990. V. 95. P. 20853–20865.

5. Birn J., Artemyev A.V., Baker D.N. et al. Particle acceleration in the magnetotail and aurora. // Space Sci. Rev. 2012. V. 173. P. 49–102.

6. Birn J., Hesse M., Nakamura R., Zaharia S. Particle acceleration in dipolarization events // J. Geophys. Res. 2013. V. 118. P. 1960–1971.

7. Ashour-Abdalla M., Lapenta G., Walker R.J. et al. Multiscale study of electron energization during unsteady reconnection events // J. Geophys. Res. 2015. V. 120. P. 4784–4799.

8. Grigorenko E.E., Malykhin A.Yu., Kronberg E.A. et al. Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures // J. Geophys. Res. Space Physics. 2015. V. 120. P. 6541–6558.

9. Zelenyi L.M., Artemyev A.V., Malova H.V. et al. Marginal stability of thin current sheets in the Earth’s magnetotail // J. Atmos. Sol. Terr. Phys. 2008. V. 70. P. 325–333.

10. Zelenyi L.M., Malova H.V., Artemyev A.V. et al. Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration // Plasma Phys. Rep. 2011. V. 37. P. 118–160.

11. Angelopoulos V., Runov A., Zhou X.Z. et al. Electromagnetic energy conversion at reconnection fronts // Science. 2013. V. 341. P. 1478–1482.

12. Artemyev A.V., Lutsenko V.N., Petrukovich A.A. Ion resonance acceleration by dipolarization fronts: Analytic theory and spacecraft observation // Ann. Geophys. 2012. V. 30. P. 317–324.

13. Lui A.T.Y. Evidence for two types of dipolarization in the earth’s magnetotail // J. Atm.Sol. Terr. Phys. 2014. V. 115. P. 17–24.

14. Grigorenko E.E., Malykhin A.Yu., Kronberg E.A. et al. Acceleration of ions to suprathermal energies by turbulence in the plasmoid-like magnetic structures // J. Geophys. Res. Space Physics. 2015. V. 120. P. 6541–6558.

15. Kronberg E.A., Grigorenko E.E., Turner D.L. et al. Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event // J. Geophys. Res. 2017. V. 122. P. 3055–3072.

16. Liang H., Lapenta G., Walker R.J. et al. Oxygen acceleration in magnetotail reconnection // J. Geophys. Res. 2017. V. 122. P. 618–639.

17. Zhou X.Z., Angelopoulos V., Sergeev V.A. et al. Accelerated ions ahead of earthward propagating dipolarization fronts // J. Geophys. Res. 2010. V.115. P. A00I03.

18. Ashour-Abdalla M., Lapenta G., Walker R.J. et al. Multiscale study of electron energization during unsteady reconnection events // J. Geophys. Res. 2015. V. 120. P. 4784–4799.

19. Baker D.N., Fritz T.A., McPherron R.L. et al. Magnetotail energy storage and release during the CDAW 6 substorm analysis intervals // J. Geophys. Res. 1985. V. 90. P. 1205–1216.

20. Grigorenko E.E., Zelenyi L.M., Dolgonosov M.S. et al. Non-adiabatic Ion Acceleration in the Earth Magnetotail and Its Various Manifestations in the Plasma Sheet Boundary Layer. // Space Sci. Rev. 2011. V. 164. P. 133–181.

21. Birn J., Artemyev A.V., Baker D.N. et al. Particle Acceleration in the Magnetotail and Aurora // Space Sci. Rev. 2012. V. 173. P. 49–102.

22. Lui A.T.Y. Evidence for two types of dipolarization in the earth’s magnetotail // J. Atm.Sol. Terr. Phys. 2014. V. 115. P. 17–24.

23. Nakamura R., Baumjohann W., Fujimoto M. et al. Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field // J. Geophys. Res. Space Phys. 2008. V. 113. P. A07S16.

24. Galeev A. A. The mechanism of magnetosphere substorms // Sov. Phys. Usp. 1979. V. 22. P. 196–197.

25. Zelenyi L.M., Lominadze J.G., Taktakishvili A.L. Generation of the energetic proton and electron bursts in planetary magnetotails // J. Geophys. Res. 1990. V. 95 P. 3883–3891.

26. Runov A., Angelopoulos V., Sergeev V.A. et al. Global properties of magnetotail current sheet flapping: THEMIS perspectives // Ann. Geophys. 2009. V. 27. P. 319–328.

27. Runov A., Angelopoulos V., Zhou X.Z. et al. THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet // J. Geophys. Res. 2011. V. 116. P. A05216.

28. Yao Z., Fazakerley A.N., Varsani A. et al. Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations // J. Geophys. Res. 2016. V. 121. P. 5185–5202.

29. Nakamura R., Baumjohann W., Klecker B. et al. Motion of the dipolarization front during a flow burst event observed by Cluster // Geophys. Res. Lett. 2002. V. 29. P. CiteID 1942.

30. Sergeev V., Angelopoulos V., Apatenkov S. et al. Kinetic structure of the sharp injection/ dipolarization front in the flow-braking region // Geophys. Res. Lett. 2009. V. 36. P. L21105.

31. Angelopoulos V., Baumjohann W., Kennel C.F. et al. Bursty bulk flows in the inner central plasma sheet // J. Geophys. Res. 1992. V. 97. P. 4027–4039.

32. Sergeev V., Angelopoulos V., Kubyshkina M. et al. Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage // J. Geophys. Res. 2011. V. 116. P. A00I26.

33. Runov A., Angelopoulos V., Sitnov M. et al. Dipolarization fronts in the magnetotail plasma sheet. // Planetary and Space Science. 2011. V. 59. P. 517–525.

34. Fu H.S., Khotyaintsev Y.V., Andre M. et al. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts // Geophys. Res. Lett. 2011. V. 38. P. L16104.

35. Hamrin M., Norqvist P., Karlsson T. et al. The evolution of flux pileup regions in the plasma sheet: Cluster observations // J. Geophys. Res. 2013. V. 118. P. 6279–6290.

36. Slavin J.A., Owen C.J., Dunlop M.W. et al. Cluster four spacecraft measurements of small traveling compression regions in the near-tail // Geophys. Res. Lett. 2003. V. 30. P. 2208.

37. Sergeev V.A., Elphic R.C., Mozer F.S. et al. A two satellite study of nightside flux transfer events in the plasma sheet // Planetary and Space Science. 1992. V.40. P.1551–1572.

38. Heyn M.F., Semenov V.S. Rapid reconnection in compressible plasma // J. Plasma Phys. 1996. V. 3. P. 2725–2741.

39. Semenov V.S., Penz T., Ivanova V.V. et al. Reconstruction of the reconnection rate from Cluster measurements: First results // J. Geophys. Res. 2005. V. 110. P. A11217.

40. Longcope D.W., Priest E.R. Fast magnetosonic waves launched by transient, current sheet reconnection // J. Plasma Phys. 2007. V. 14. P. 122905.

41. Sitnov M.I., Swisdak M., Divin A.V. Dipolarization fronts as a signature of transient reconnection in the magnetotail // J. Geophys. Res. 2009. P. 114. P. A04202.

42. Sitnov M.I., Swisdak M. Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts // J. Geophys. Res. 2011. V. 116. P. A12216.

43. Ono Y., Nosé M., Christon S.P. et al. The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization // J. Geophys. Res. 2009. V. 114. P. A05209.

44. El-Alaoui M., Richard R.L., Ashour-Abdalla M. et al. Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations // J. Geophys. Res. 2013. V. 118. P. 7752–7761.

45. Grigorenko E.E., Kronberg E.A., Daly P.W. et al. Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet // J. Geophys. Res. 2016. V. 121. P. 9985–10004.

46. Grigorenko E.E., Kronberg E.A., Daly P.W. Heating and acceleration of charged particles during magnetic dipolarizations // Cosmic Research. 2017. V. 55. P. 57–66.

47. Ipavich F.M., Galvin A.B., Gloeckler G. et al. Energetic (greater than 100 keV) O(+) ions in the plasma sheet // Geophys. Res. Lett. 1984. V. 11. P. 504–507.

48. Nosé M., Ohtani S., Lui A.T.Y. Change of energetic ion composition in the plasma sheet during substorms // J. Geophys. Res. 2000. V. 105. P. 23277–23286.

49. Cattell C.A., Mozer F.S. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times // Geophys. Res. Lett. 1982. V. 9. P. 1041–1044.

50. Hoshino M., Nishida A., Yamamoto T. et al. Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation // Geophys. Lett. 1994. V. 21. P. 2935–2938.

51. Bauer T.M., Baumjohann W., Treumann R.A. et al. Low-frequency waves in the near-Earth plasma sheet // J. Geophys. Res. 1995. V. 100. P. 9605–9618.

52. Delcourt D.C., Pedersen A., Sauvaud J.A. Dynamics of single-particle orbits during substorm expansion phase // J. Geophys. Res. 1990. V. 95. P. 20853–20865.

53. Veltri P., Zimbardo G., Taktakishvili A.L. et al. Effect of magnetic turbulence on the ion dynamics in the distant magnetotail // J. Geophys. Res. 1998. V. 103. P. 14897–14916.

54. Delcourt D.C. Particle acceleration by inductive electric fields in the inner magnetosphere // J. Atm. Solar Ter. Phys. 2002. V. 64. P. 551–559.

55. Greco A., Artemyev A., Zimbardo G. Heavy ion acceleration at dipolarization fronts in planetary magnetotails // Geophys. Res. Lett. 2015. V. 42. P. 8280–8287.

56. Perri S., Lepreti F., Carbone V. et al. Dynamical properties of test particles in stochastic electromagnetic fields // Communications in Nonlinear Science and Numerical Simulation. 2009. V. 14. P. 2347–2352.

57. Greco A., Perri S., Zimbardo G. et al. Particle acceleration by stochastic fluctuations and dawn-dusk electric field in the Earth’s magnetotail // Adv. Space Res. 2009. V. 44 P. 528–533.

58. Ukhorskiy A.Y., Sitnov M.I., Merkin V.G. et al. Ion acceleration at dipolarization fronts in the inner magnetosphere // J. Geophys. Res. 2017. V. 122. P. 3040–3054.

59. Zhou X.Z., Ge Y.S., Angelopoulos V., Runov A. et al. Dipolarization fronts and associated auroral activities: 2. Acceleration of ions and their subsequent behavior // J. Geophys. Res. 2012. V. 117. P. A10227.

60. Birn J., Thomsen M.F., Hesse M. Electron acceleration in the dynamic magnetotail: Test particle orbits in three-dimensional magnetohydrodynamic simulation fields // J. Plasma Phys. 2004. V. 11. P. 1825–1833.

61. Apatenkov S.V., Sergeev V.A., Kubyshkina M.V. et al. Multi-spacecraft observation of plasma dipolarization/ injection in the inner magnetosphere // Ann. Geophys. 2007. V. 25. P. 801–814.

62. Hoshino M. Electron surfing acceleration in magnetic reconnection // J. Geophys. Res.: Space Physics. 2005. V.110. P. A10215.

63. Catapano F., Zimbardo G., Perri S. et al. Proton and heavy ion acceleration by stochastic fluctuations in the Earth’s magnetotail // Ann. Geophys. 2016. V. 34. P. 917–926.

64. Harris E.G. On a plasma sheet separating regions of oppositely directed magnetic field //uovo Cimento. 1962. V. 23. P. 115–121.

Система Orphus

Загрузка...
Вверх