Space Experiment «Convergence»: Scientifi c Objectives, On-Board Equipment, Methods of Reverse Problems

 
PIIS020596140002356-2-1
DOI10.31857/S020596140002356-2
Publication type Article
Status Published
Authors
Affiliation: Space Research Institute of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: Space Research Institute of the Russian Academy of Sciences
Address: Russian Federation
Affiliation: Sangukwon University
Address: Korea, Republic of
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 4
Pages71-96
Abstract

The purpose of this work is to acquaint the broad scientifi c community in detail with the proposed space mission “Convergence” on the Russian segment of the International Space Station. The principal feature of the mission is, fi rstly, the necessity to create a new type of multifrequency radio-thermal airborne complexes with a specialized set of operating frequencies and the formation of algorithms and PAO for the threedimensional recovery of the water vapor fi eld in the lower troposphere and for estimating the horizontal advection and convective latent heat fl uxes at various altitudes and with diff erent forms of the boundaries of the investigated regions. Secondly, an important part of the mission is the global monitoring of optical transient activity, including lightning in cloud tropospheric systems and electrical discharges in the upper atmosphere, accompanied by a variety of short-term optical glows, commonly referred to as transient luminous events. A signifi cant contribution to the elucidation of physics and the development of models of high-altitude electric discharges is the synchronous operation of the lightning detector and the gamma detector to search for and study gamma-ray bursts of terrestrial origin, including, in the previously unexplored latitudes, up to ±51.

It seems that the proposed instrumental confi guration and mission compprehension, which includes the synchronous operation of devices of diff erent ranges of electromagnetic radiation such as the microwave range, optical range and gamma range, will make a signifi cant contribution to the elucidation of the physics of interaction processes of catastrophic atmospheric phenomena of the hydrodynamic type – tropical cyclones – with the electrical activity of tropospheric cloud systems (the fi eld of lightning discharges) and the activity of high-altitude electric discharges which, in turn, can serve as a serious experimental basis for the formation of physical ideas about the genesis of gamma-ray outbreaks of terrestrial origin.

Keywordssatellite microwave remote sensing, integral vapor content of the atmosphere, spatio-temporal interpolation, satellite radio-thermal imaging, speed and directions of surface wind, lightning activity, terrestrial gamma-ray fl ashes
AcknowledgmentStudies of the transfer of latent heat in the Earth’s atmosphere according to satellite radio thermal data, the development of the technological image of MIRS space equipment were carried out as part of the state assignment on Monitoring (State Registration No. 01.20.2.00164); The solution of the fundamental problem of creating a new differential method for measuring the concentration profile of water vapor in the Earth's troposphere based on a multichannel space radiometer with extreme characteristics was carried out within the framework of the RFBR grant No. 18-02-01009.
Received22.12.2018
Publication date22.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1582

Readers community rating: votes 0

1. Bogomolov V.V., Panasyuk M.I., Svertilov S.I., Bogomolov A.V., Garipov G.K., Iyudin A.F., Klimov P.A., Klimov S.I., Mishieva T.M., Minaev P.Yu., Morozenko V.S., Morozov O.V., Pozanenko A.S., Prokhorov A.V., Rotkel' Kh. Nablyudenie gamma-vspleskov zemnogo proiskhozhdeniya v kosmicheskom ehksperimente REhLEK na sputnike Vernov // Kosmich. issled. 2017. T. 55. № 3. S. 169–178.

2. Boldyrev V.V., Gorobets N.N., Il'gasov P.A. i dr. Sputnikovyj mikrovolnovyj skaner/zondirovschik MTVZA-GYa // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2008. Vyp. 5. T. 1. S. 243–248.

3. Gurevich A.V., Zelenyj L.M., Klimov S.I. Nauchnye zadachi missii «Chibis-M» // Missiya «Chibis-M»: sb. tr. vyezdn. sem. / Pod red. R.R. Nazirova. Rossiya, Tarusa, 24–27 fevr. 2009. M.: IKI RAN, 2009. S. 7–25.

4. Ermakov D.M. Ispol'zovanie informatsii o troposfernoj dinamike pri radioteplovom distantsionnom zondirovanii vertikal'nogo profilya vlazhnosti atmosfery // Zhurn. radioehlektroniki (ehlektronnyj zhurnal). 2017a. № 12. http://jre.cplire.ru/jre/dec17/15/text.pdf.

5. Ermakov D.M. Analiz trekhmernoj struktury polya vlagosoderzhaniya atmosfery kak zadacha tekhnicheskogo zreniya / 15-ya Vser. otkr. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa»: tez. dokl. IKI RAN, Moskva, 13–17 noyabrya 2017. 2017b. S. 458.

6. Ermakov D.M. Global'naya tsirkulyatsiya skrytogo tepla v atmosfere Zemli po dannym sputnikovogo radioteplovideniya // Issled. Zemli iz kosmosa. 2018. № 3. (v pechati).

7. Ermakov D.M., Raev M.D., Suslov A.I., Sharkov E.A. Ehlektronnaya baza mnogoletnikh dannykh global'nogo radioteplovogo polya Zemli v kontekste mnogomasshtabnogo issledovaniya sistemy okean–atmosfera // Issled. Zemli iz kosmosa. 2007. № 1. S. 7–13.

8. Ermakov D.M., Chernushich A.P., Sharkov E.A., Pokrovskaya I.V. Poisk istochnika ehnergii pri intensifikatsii TTs Katrina po dannym mikrovolnovogo sputnikovogo zondirovaniya // Issled. Zemli iz kosmosa. 2012a. № 4. S. 47–56.

9. Ermakov D.M., Chernushich A.P., Sharkov E.A. Detalizatsiya faz razvitiya TTs Katrina po interpolirovannym global'nym polyam vodyanogo para // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2012b. T. 9. № 2. S. 207–213.

10. Ermakov D.M., Sharkov E.A., Chernushich A.P. Vozmozhnosti kolichestvennogo opisaniya mezomasshtabnykh protsessov v atmosfere na osnove animatsionnogo analiza // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2014. T. 11. № 4. S. 153–162.

11. Ermakov D.M., Sharkov E.A., Chernushich A.P. Sputnikovoe radioteplovidenie na sinopticheskikh i klimaticheski znachimykh masshtabakh // Issled. Zemli iz kosmosa. 2016. № 5. S. 3–9.

12. Ermakov D.M., Sharkov E.A., Chernushich A.P. Tsirkulyatsiya skrytogo tepla v atmosfere Zemli: analiz 15 let radioteplovykh sputnikovykh izmerenij // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2017. T. 14. № 6. S. 9–27.

13. Kuznetsov V.D., Ruzhin Yu.Ya., Sinel'nikov V.M. Geofizicheskie ehksperimenty na MKS // Kosmіchna nauka і tekhnol. 2011. T. 17. № 1. S. 12–16.

14. Pokrovskaya I.V., Sharkov E.A. Tropicheskie tsiklony i tropicheskie vozmuscheniya Mirovogo okeana: khronologiya i ehvolyutsiya. Vers. 3.1. (1983–2005). M.: Poligraf servis, 2006. 728 s.

15. Pokrovskaya I.V., Sharkov E.A. Tropicheskie tsiklony i tropicheskie vozmuscheniya Mirovogo okeana: khronologiya i ehvolyutsiya (2006–2010). Vers. 4.1. M.: KDU, 2011. 212 s.

16. Pokrovskaya I.V., Sharkov E.A. Tropicheskie tsiklony i tropicheskie vozmuscheniya Mirovogo okeana: khronologiya i ehvolyutsiya (2011–2015). Vers. 5.1. M.: KDU, 2016. 162 s.

17. Sterlyadkin V.V., Sharkov E.A. Differentsial'nye radio teplovye metody opredeleniya vertikal'nogo profilya vodyanogo para v troposfere i stratosfere Zemli // Issled. Zemli iz kosmosa. 2014. № 5. S. 15–28.

18. Sterlyadkin V.V., Pashinov E.V., Kuz'min A.V., Sharkov E.A. Differentsial'nye radioteplovye metody vosstanovleniya profilya vlazhnosti atmosfery s borta kosmicheskikh apparatov // Issled. Zemli iz kosmosa. 2017a. № 2. S. 64–76.

19. Sterlyadkin V.V., Pashinov E.V., Kuz'min A.V., Sharkov E.A. Vliyanie podstilayuschej poverkhnosti na tochnost' differentsial'nykh radiometricheskikh izmerenij profilya vodyanogo para v nizhnej troposfere so sputnikov // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2017b. T. 14. № 5. S. 268–277.

20. Chernenko A.M. O svyazi gamma-vspleskov zemnogo proiskhozhdeniya (TGF) s raspredeleniem primesej v troposfere // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2018. (v pechati).

21. Sharkov E.A. Distantsionnye issledovaniya atmosfernykh katastrof // Issled. Zemli iz kosmosa. 2010. № 1. S. 52–68.

22. Sharkov E.A., Kim G.A., Pokrovskaya I.V. Ehvolyutsiya tropicheskogo tsiklona Gonu i ego svyaz' s polem integral'nogo vodyanogo para v ehkvatorial'noj oblasti // Issled. Zemli iz kosmosa. 2008. № 6. S. 25–30.

23. Sharkov E.A., Kim G.A., Pokrovskaya I.V. Ehvolyutsiya tropicheskogo tsiklona Hondo v pole ehkvatorial'nogo vodyanogo para s ispol'zovaniem mul'tispektral'nogo podkhoda // Issled. Zemli iz kosmosa. 2011a. № 1. S. 22–29.

24. Sharkov E.A., Kim G.A., Pokrovskaya I.V. Ehnergeticheskiosobennosti mnozhestvennogo tropicheskogo tsiklogeneza po mul'tispektral'nym sputnikovym nablyudeniyam // Issled. Zemli iz kosmosa. 2011b. № 2. S. 18–25.

25. Sharkov E.A., Shramkov Ya.N., Pokrovskaya I.V. Osobennosti ehkvatorial'nogo polya vodyanogo para pri ehvolyutsii tropicheskogo tsiklona (TTs) na primere TTs Francisco (2001) // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2011v. T. 8. № 3. S. 310–316.

26. Sharkov E.A., Shramkov Ya.N., Pokrovskaya I.V. Kriticheskij parametr genezisa tropicheskikh tsiklonov v global'nom pole integral'nogo vodyanogo para // Sovr. probl. dist. zondir. Zemli iz kosmosa. 2011. T. 8. № 1. S. 280–286.

27. Sharkov E.A., Shramkov Ya.N., Pokrovskaya I.V. Povyshennoe soderzhanie vodyanogo para v atmosfere tropicheskikh shirot kak neobkhodimoe uslovie genezisa tropicheskikh tsiklonov // Issled. Zemli iz kosmosa. 2012. № 2. S. 73–82.

28. Albrecht R.I., Goodman S.J., Petersen W.A., Buechler D.E., Bruning E.C., Blakeslee R.J., Christian H.J. The 13 Years of TRMM Lightning Imaging Sensor: From Individual Flash Characteristics to Decadal Tendencies // 14th Int. Conf. Atmos. Elec. Aug. 8–12, Rio de Janeiro, Brazil. 2011.

29. Albrecht R.I., Goodman S., Buechler D., Blakeslee R., Christian H. Where are the lightning hotspots on Earth? // Bull. Amer. Meteor. Soc. 2016. V. 97. P. 2051–2068.

30. Archer C.L., Caldeira K. Historical trends in the jet streams // Geophys. Res. Lett. 2008. V. 35. № 8. L08803. doi: 10.1029/2008GL033614.

31. Beirle S., Koshak W., Blakeslee R., Wagner T. Global patterns of lightning properties derived by OTD and LIS // Nat. Hazards and Earth Syst. Sci. 2014. V. 14. P. 2715–2726.

32. Bommarito J.J. DMSP Special Sensor Microwave Imager Sounder (SSMIS) // Proc. SPIE. 1993. V. 1935. P. 230–238.

33. Briggs M., Xiong S., Connaughton V. et al. Terrestrial gamma-ray fl ashes in the Fermi era: Improved observations and analysis methods // J. Geophys. Res. 2013. V. 118. P. 3805–3830.

34. Briggs M., Connaughton V., Stanbro M. et al. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog // EGU Gen. Assem. 2015a. id. 9961.

35. Briggs M.S., Wersinger J.M., Fogle M. Jr., Biaz S., Jenke P. (2015b) TRYAD: a Pair of CubeSats to Measure Terrestrial Gamma-ray Flash Beams // Amer. Geophys. Un., Fall Meeting 2015. 2015. Abstr. id. AE33A-0481.

36. Christian H.J., Blakeslee R.J., Boccippio D.J., Boeck W.L., Buechler D.E., Driscoll K.T., Goodman S.J., Hall J.M., Koshak W.J., Mach D.M., Stewart M.F. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector // J. Geophys. Res. 2003. V. 108. № D1. P. ACL4-1–ACL4-15.

37. Connaughton V., Briggs M.S., Xiong S. et al. Radio signals from electron beams in terrestrial gamma ray fl ashes // J. Geophys. Res. 2013. V. 118. № 5. P. 2313–2320.

38. Emanuel K. How hurricanes respond to climate change. Lektsiya v Kornel'skom univ. 2017. (ehlektr. res.). Rezhim dostupa: https://www.youtube.com/watch?v=8cmORDsAS0s

39. Ermakov D.M., Sharkov E.A., Chernushich A.P. Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones // The Int. Arch. Photogr., Rem. Sens. and Spa. Inf. Sci.–ISPRS Arch. 2015. V. 15. № 7/W3. P. 179–186.

40. Ermakov D.M., Sharkov E.A., Chernushich A.P. A multisensory algorithm of satellite radiothermovision // Izv. Atm. and Oc. Phys. 2016. V. 52. № 9. P. 1172–1180.

41. Fishman G.J., Bhat P.N., Mallozzi R., Horack J.M., Koshut T., Kouveliotou C., Pendleton G.N., Meegan C.A., Wilson R.B., Paciesas W.S., Goodman S.J., Christian H.J. Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin // Science. 1994. V. 264. № 5163. P. 1313–1316.

42. Fu Q., Johanson C.M., Wallace J.M., Reichler T. Enhanced midlatitude tropospheric warming in satellite measurements // Science. 2006. V. 312. № 5777. P. 1179.

43. Gangwar R.K., Gohil B.S. Retrieval of Layer Averaged Relative Humidity Profi les from MHS Observations over Tropical Region // Int. J. Atm. Sci. 2014. V. 2014. Article ID 645970.

44. Gjesteland T., Ostgaard N., Collier A.B. et al. Confi ning the angular distribution of terrestrial gamma ray flash emission // J. Geophys. Res. 2011. V. 116. A11313.

45. Gohil B.S., Mathur A.K. Atmospheric humidity profi le retrieval algorithms for Megha-Tropiques SAPHIR: a simulation study and analysis of AMSU-B data // Rem. Sens. Atm. and Clouds: Proc. SPIE. 2006. V. 6408. P. 640803-1–640803-9.

46. Grefenstette B.W., Smith D.M., Hazelton B.J., Lopez L.I. First RHESSI terrestrial gamma ray fl ash catalog // J. Geophys. Res. 2009. V. 114. Iss. A2. Cite ID A02314.

47. Grove J.E., Chekhtman A. Fermi LAT Collaboration, Am. Astron. Soc., HEAD meeting № 13, № 127.27. 2013.

48. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm // Phys. Lett. A. 1992. V. 165. P. 463–468.

49. Gurevich A.V. et al. Upper Limit of Gamma Ray Flux in Intra-cloud Discharges from Observations on-board Chibis-M Microsatellite // J. Atm. and Solar-Terrestr. Phys. 2018. (submitted).

50. Holzworth R.H. World Wide Lightning Location Network. URL: http://wwlln.net (2018).

51. Hudson R.D., Andrade M.F., Follette M.B., Frolov A.D. The total ozone field separated into meteorological regimes – Part II: Northern Hemisphere mid-latitude total ozone trends // Atm. Chem. and Phys. 2006. V. 6. № 12. P. 5183–5191.

52. Hu Y., Fu Q. Observed poleward expansion of the Hadley circulation since 1979 // Atm. Chem. and Phys. 2007. V. 7. № 19. P. 5229–5236.

53. Huntrieser H., Schlager H., Feigl C., Holler H. Transport and production of NOx in electrifi ed thunderstorms: Survey of previous studies and new observations at midlatitudes // J. Geophys. Res. 1998. V. 103. № D21. P. 28,247–28,264.

54. Jaegle L., Steinberger L., Martin R.V., Chance K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions // Faraday Disc. 2005. V. 130. P. 407–433.

55. Jeong S. et al. UBAT of UFFO/Lomonosov: The X-ray Space Telescope to Observe Early Photons from Gamma-ray Bursts // Space Sci. Rev. 2018. V. 218. P. 16.

56. Kang S.M., Seager R. Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere? // Clim. Dynam. 2015. V. 44. № 5–6. P. 1457–1472.

57. Koshak W.J. A mixed exponential distribution model for retrieving ground fl ash fraction from satellite lightning imager data // J. Atm. Ocean. Techn. 2011. V. 28. P. 475–492.

58. Koshak W.J. Lightning NOx estimates from space-based lightning imagers // 16th Annual Community Modeling and Analysis System (CMAS) Conf. Chapel Hill, NC, Oct. 23–25, 2017.

59. Koshak W.J, Cummins K.L., Buechler D.E., Vant-Hull B., Blakeslee R.J., Williams E.R., Peterson H.S. Variability of CONUS lightning in 2003–12 and associated impacts // J. Appl. Meteor. Clim. 2015. V. 54. P. 15–41.

60. Kotov Yu., Arkhangelskaja I., Arkhangelsky A. et al. The study of cosmic gamma-emission nonstationary fl uxes characteristics by the AVS-F apparatus data // The Coronas-F Space Mission: Key Results for Solar Terrestrial Physics / Ed. V.D. Kuznetsov. Springer, 2014. P. 175–256.

61. Marisaldi M., Fuschino F., Tavani M. et al. Properties of terrestrial gamma ray fl ashes detected by AGILE MCAL below 30 MeV // J. Geophys. Res. 2014. V. 119. P. 1337.

62. Mathur A.K., Gangwar R.K., Gohil B.S., Sanjib K. Deb, Prashant Kumar, Munn V., Shukla B. Simon, Pal P.K. Humidity profi le retrieval from SAPHIR on-board the Megha-Tropiques // Current Sci. 2013. V. 104. № 12. P. 1650–1655.

63. Murray L.T. Lightning NOx and Impacts on Air Quality // Curr. Pollut. Rep. 2016. V. 2. P. 115–133.

64. Neubert T., Kuvvetli I., Budtz-Jorgensen C., Ostgaard N., Reglero V., Arnold N. The Atmosphere-Space Interactions Monitor (ASIM) for the International Space Station // ILWS Workshop 2006. Goa, Feb. 19–20, 2006.

65. Ostgaard N., Gjesteland T., Hansen R.S. et al. The true fl uence distribution of terrestrial gamma fl ashes at satellite altitude // J. Geophys. Res. 2012. V. 117. A03327.

66. Ostgaard N., Gjesteland T., Carlson B.E. Simultaneous observations of optical lightning and terrestrial gamma ray fl ash from space // Geophys. Res. Lett. 2013. V. 40. P. 2423–2426.

67. Palmen E., Newton C.W. Atmospheric circulation systems: Their structural and physical interpretation. N.Y.: Acad. Press, 1969. 603 p.

68. Pan Y., Li L., Jiang X., Li G., Zhang W., Wang X., Ingersol A.P. Earth’s changing global atmospheric energy cycle in response to climate change // Nature Comm. 2017. V. 8. Article number 14367. doi: 10.1038/ncomms14367.

69. Reichler T. Changes in the atmospheric circulation as indicator of climate change. In: Climate change: Observed impacts on planet Earth / Ed. T.M. Letcher. Elsevier, 2009. P. 145–164.

70. Rosenlof K.H. Transport changes inferred from HALOE water and methane measurements // J. Meteorol. Soc. Japan. 2002. V. 80. № 4B. P. 831–848.

71. Sarria D., Lebrun F., Blelly P.-L., Chipaux R., Laurent P., Sauvaud J.-A., Prech L., Devoto P., Pailot D. TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray fl ashes and associated electron beams // Geosci. Instrum. Methods and Data Syst. 2017. V. 6. № 2. P. 239–256. doi: 10.5194/gi-6-239-201

72. Seidel D.J., Randel W.J. Recent widening of the tropical belt: Evidence from tropopause observations // J. Geophys. Res. 2007. V. 112. Iss. D20. D20113. doi: 10.1029/2007JD008861.

73. Seidel D.J., Fu Q., Randel W.J., Reichler T. Widening of the tropical belt in a changing climate // Nat. Geosci. 2008. V. 1. P. 21–24. doi: 10.1038/ngeo.2007.38.

74. Sharkov E.A. Remote sensing of tropical regions. N.Y. etc.: John Wiley and Sons/PRAXIS. Chichester, 1998. 310 p.

75. Sharkov E.A. Global Tropical Cyclogenesis. Berlin, Heidelberg, L., N.Y. etc.: Springer/PRAXIS, 2000. 361 p.

76. Sharkov E.A. Global Tropical Cyclogenesis / 2nd ed. Berlin, Heidelberg, L., N.Y. etc.: Springer/PRAXIS, 2012. 650 p.

77. Smith D.M., Hazelton B.J., Grefenstette B.W., Dwyer J.R., Holzworth R.H., Lay E.H. Terrestrial gamma ray flashes correlated to storm phase and tropopause height // J. Geophys. Res. 2010. V. 115. Iss. 20. CiteID A00E49.

78. Sterlyadkin V.V., Pashinov E.V., Kuzmin A.V., Sharkov E.A. Differential Radiothermal Methods for Satellite Retrieval of Atmospheric Humidity Profile // Izv. Atm. and Oc. Phys. 2017. V. 53. № 9. P. 979–990.

79. Tavani M., Marisaldi M., Labanti C. et al. Terrestrial Gamma-Ray Flashes as Powerful Particle Accelerators // Phys. Rev. Lett. 2011. V. 106. 018501.

80. Tierney D., Briggs M.S., Fitzpatrick G. et al. Fluence distribution of terrestrial gamma ray flashes observed by the Fermi Gamma-ray Burst Monitor // J. Geophys. Res. 2013. V. 118. P. 6644–6650.

81. Veraverbeke S., Rogers B.M., Goulden M.L., Jandt R.R., Miller Ch.E., Wiggins E.B., Randerson J.T. Lightning as a major driver of recent large fire years in North American boreal forests. // Nat. Clim. Change. 2017. V. 7. P. 529–534.

82. Weng F., Zou X. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications // J. Geophys. Res. 2012. V. 117. P. 2156–2202.

83. Westcott N.E. Summertime cloud-to-ground lightning activity around major Midwestern urban areas // Appl. Meteorol. 1995. V. 34. P. 1633–1642.

84. Wunsch C. The total meridional heat flux and its oceanic and atmospheric partition // J. Clim. 2005. V. 18. № 21. P. 4374–4380.

85. Zhang W., Zhang Y., Zheng D., Wang F., Xu L. Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific // J. Geophys. Res. Atm. 2015. V. 120. P. 4072–4089.

Система Orphus

Loading...
Up