views: 1589
Readers community rating: votes 0
1. Ul'yanov M.V. Resursno-ehffektivnye komp'yuternye algoritmy. Razrabotka i analiz M.: FIZMATLIT, 2008.
2. Oliver I.M., Smith D.J., Holland J.R.C. A Study of Permutation Crossover Operators on the Traveling Salesman Problem // Proc. 2nd Int. Conf. on Genetic Algorithms. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1987. P. 224–230.
3. Cotta C., Aldana J.F., Nebro A.J., Troya J.M. Hybridizing Genetic Algorithms with Branch and Bound Techniques for the Resolution of the TSP / Artificial Neural Nets and Genetic Algorithm. Pearson D., Steele N., Albrecht R. (Eds.), Wien, N.Y.: Springer-Verlag, 1995. P. 277–280.
4. Goldberg D.E., Lingle R. Alleles, Loci, and the Travelling Salesman Problem // Proc. 1st Int. Conf. on Genetic Algorithms (ICGA’85). Hillsdale, N.J.: Lawrence Erlbaum Associates, 1985. P. 154–159.
5. Sergeev S. Nonlinear Resolving Functions for the Travelling Salesman Problem // Autom. Remote Control. 2013. V. 74. No. 6. P. 978–994.
6. Sergeev S. The Symmetric Travelling Salesman Problem. II // Autom. Remote Control. 2010. V. 71. No. 4. P. 681–696.
7. Chang-Chien Chou. On the Shortest Path Touring n Circles // Int. J. Advancement Comput. Technol. 2012. V. 4. No. 10. P. 356–364.
8. Toriello A. Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling Salesman Problem // Math. Programm. 2014. V. 144. No. 1/2. P. 247–264.
9. Khachaj M.Yu., Neznakhina E.D. Priblizhennye skhemy dlya obobschennoj zadachi kommivoyazhera // Tr. IMM UrO RAN. 2016. No. 22:3. S. 283–292.
10. Khachaj M.Yu., Dubinin R.D. Approksimiruemost' zadachi ob optimal'noj marshrutizatsii transporta v konechnomernykh evklidovykh prostranstvakh // Tr. IMM UrO RAN. 2016. № 22:2. S. 292–303.
11. Knuth D.E. Estimating the Efficiency of Backtracking Programs // Math. Comput. 1975. V. 29. P. 121–136.
12. Cornu´ejols G., Karamanov M., Li Y. Early Estimates of the Size of Branch-andBound Trees // INFORMS J. Comput. 2006. V. 18. No. 1. P. 86–96.
13. Lobjois L., Lemaitre M. Branch-and-Bound Algorithm Selection by Performance Prediction // Amer. Associat. Artific. Intelligence, Menlo Park, CA, 1998.
14. Purdom P.W. Tree Size by Partial Backtracking // SIAM J. Comput. 1978. V. 7. No. 4. P. 481–491.
15. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. An Algorithm for the Traveling Salesman Problem // Oper. Res. 1963. No. 11. P. 972–989.
16. Ulyanov M.V., Fomichev M.I. Resource Characteristics of Ways to Organize a Decision Tree in the Branch-and-Bound Method for the Traveling Salesmen Problem // Biznes–informatika. 2015. № 4(34). C. 38–46.
17. Goloveshkin V.A., Zhukova G.N., Ul'yanov M.V., Fomichev M.I. Sravnenie resursnykh kharakteristik traditsionnogo i modifitsirovannogo metoda vetvej i granits dlya TSP // Sovremen. inform. tekhnologii i IT-obrazovanie. 2015. T. 2. № 11. C. 151–159.
18. Kramer G. Matematicheskie metody statistiki. M.: Mir, 1975.
19. Pearson K. Contributions to the Mathematical Theory of Evolution. III // Phil. Trans. Royal Soc. London. 1896. V. 187. P. 253–318.
20. Goloveshkin V.A., Zhukova G.N., Ul'yanov M.V., Fomichev M.I. Raspredelenie logarifma slozhnosti individual'nykh zadach kommivoyazhera pri fiksirovannoj dline vkhoda // Sovremen. inform. tekhnologii i IT-obrazovanie. 2016. T. 12. № 3. Ch. 2. C. 131–137.
21. Goloveshkin V.A. , Zhukova G.N., Ul'yanov M.V., Fomichev M.I. Ispol'zovanie kvantil'nykh koehffitsientov asimmetrii i ehkstsessa dlya otsenki slozhnosti resheniya zadachi kommivoyazhera // Int. J. Open Inform. Technol. 2016. T. 4. № 12. C. 7–12.
22. Zhukova G.N. Identifikatsiya veroyatnostnogo raspredeleniya po koehffitsientam asimmetrii i ehkstsessa // Avtomatizatsiya. Sovremennye tekhnologii. 2016. № 5. C. 26–33.
23. Moors J.J.A. A Quantile Alternative for Kurtosis // The Statist. 1988. V. 37. P. 25-32.
24. Moors J.J.A., Coenen V.M.J., Heuts R.M.J. Limiting Distributions of Moment- and Quantile-based Measures for Skewness and Kurtosis // School Econom. Management, Tilburg Univer., Res. Mem. FEW 620, 1993.
25. Moors J.J.A., Wagemakers R.Th.A., Coenen V.M.J., et al. Characterizing Systems of Distributions by Quantile Measures // Statist. Neerlandica, 1996. V. 50. No. 3. P. 417–430.