About theory of stability of operation mode of steam-water well in exploitation of geothermal power plants

 
PIIS000233100003523-9-1
DOI10.31857/S000233100003523-9
Publication type Article
Status Published
Authors
Affiliation: Mining Institute of Far Eastern Branch of the Russian Academy of Sciences
Address: Russian Federation
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 6
Pages103-117
Abstract

It is shown that the Entov-Droznin theory, which describes the stability of the operating mode of the steam-water well, does not contain a convincing description of the mechanism of occurrence and development of the instability, and does not explain a number of practically observed phenomena, such as: stabilization of the operating regime with increasing wellhead pressure; the absence of instability near the inversion point of the productivity curve; instability at low flow rates, which fall under the stability condition. A mechanism of beginnings and development of instability is considered in the paper. The mechanism is expressed as reaction on fluctuations in the flow parameters in the form of an increase (or decrease) in the force causing an increase (or decrease) in the pulse as a result of an increase (or decrease) in the pulse itself. It was noted that the development of instability in the steam-water well is due to the decrease in the gravitational component of the pressure drop with increasing flow and is carried from the wellhead to the bottomhole. This mechanism is consistent with a set of known phenomena used to justify the Entov-Droznin theory and those that contradict it. Theoretically, the dependence of the well test results on flow conditions downstream from the wellhead and the possibility of metastable flow is predicted, when the condition of stability for the well is not generally satisfied, but there are no conditions for the development of instability at the wellhead. Data are presented that indicate the practical existence of the predicted phenomena.

Keywordssteam-hydrothermal field, production well, steam-water flow, stability, productivity curve
AcknowledgmentThe study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of research project No. 16-05-00398 a.
Received16.01.2019
Publication date16.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1110

Readers community rating: votes 0

1. Bertani R. Geothermal power generation in the world 2010–2014 update report // Geothermics. 2016. Vol. 60. Pp. 31–43.

2. Lund J.W., Boyd T.L. Direct utilization of geothermal energy 2015 worldwide review // Geothermics. 2016. Vol. 60. Pp. 66–93.

3. Grubelich M.C., King D., Knudsen S., Blankenship D., Bane S., Venkatesh P. An overview of a high energy stimulation technique for geothermal applications // Proceed. of the World Geothermal Congress. Melbourne, Australia. 2015. N31070. 6 p.

4. On M.D.G., Andrino R.P. Evaluation of hydraulic stimulation-induced permeability enhancement // Proceed. of the World Geothermal Congress. Melbourne, Australia. 2015. N22094. 8 p.

5. Pasikki R.G., Libert F., Yoshioka K., Leonard R. Well stimulation techniques applied at the Salak geothermal field // Proceed. of the World Geothermal Congress. Bali, Indonesia. 2010. N2274. 11 p.

6. Siratovich P., Cole J., Heap M., Villeneuve M., Reuschle T., Swanson K., Kennedy B., Gravley D., Lavallee Y. Experimental thermal stimulation of the Rotokawa Andesite // Proceed. of the World Geothermal Congress. Melbourne, Australia. 2015. N22044. 6 p.

7. Alimonti C., Berardi D., Bocchetti D., Soldo E. Coupling of energy conversion systems and wellbore heat exchanger in a depleted oil well // Geothermal Energy. 2016. Vol. 4. N11. 17 p.

8. Li X. – Y., Li T. – Y., Qu D. – Q., Yu J. – W. A new solution for thermal interference of vertical U-tube groundheat exchanger for cold area in China // Geothermics. 2017. Vol. 65. Pp. 72–80.

9. Lous M.L., Larroque F., Dupuy A., Moignard A. Thermal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model // Geothermics. 2015. Vol. 57. Pp. 157–172.

10. Sandler S., Zajaczkowski B., Bialko B., Malecha Z.M. Evaluation of the impact of the thermal shunt effect on the U-pipeground borehole heat exchanger performance // Geothermics. 2017. Vol. 65. Pp. 244–254.

11. Pauzh tskie goryachie vody na Kamchatke. M.: Nauka, 1965. 208 s.

12. Droznin V.A. O prirode gejzernogo rezhima // Gidrotermal'nyj protsess v oblastyakh tektono-magmaticheskoj aktivnosti. M.: Nauka, 1971. S. 96–103.

13. Droznin V.A. Fizicheskaya model' vulkanicheskogo protsessa. M.: Nauka, 1980. 92 s.

14. Entov V.M. O nestatsionarnykh protsessakh pri fontanirovanii skvazhin // Izvestiya AN SSSR. Ser. Mekhanika i mashinostroenie. 1964. № 2. S. 31–40.

15. Boure J., Bergles A., Tong L. Review of two-phase flow instabilities // Nucl. Eng. Des. 1973. Vol. 25. Pp. 165–192.

16. Nayak A.K., Vijayan P.K. Flow instabilities in boiling two-phase natural circulation systems: A review. Science and Technology of Nuclear Installations ID573192. 2008. 15 p.

17. Ruspini L.C., Marcel C.P., Clausse A. Two-phase flow instabilities: A review // Int. J. of Heat and Mass Transfer. 2014. Vol. 71. Pp. 521–548.

18. Shulyupin A.N. Steam-water flow instability in geothermal wells // Int J of Heat and Mass Transfer. 2017. Vol. 105. Pp. 290–295.

19. Shulyupin A.N., Chermoshentseva A.A. Semejstvo matematicheskikh modelej WELL?4 dlya rascheta techenij v parovodyanykh geotermal'nykh skvazhinakh // Matematicheskoe modelirovanie. 2016. T. 28. № 7. S. 56–64.

20. Klimentov P.P., Kononov V.M. Dinamika podzemnykh vod. Moskva: Vysshaya shkola, 1973. 440 s.

21. March A. Modelling a geothermal steam fields to evaluate well capacities and assist operational decisions // Proceed. of the World Geothermal Congress. Melbourne, Australia. 2015. N25008. 9 p.

22. Shulyupin A.N., Chernev I.I. Some methods for reducing of steam deficit at geothermal power plants exploitation: Experience of Kamchatka (Russia) // Geothermal Energy. 2015. Vol. 3. N 23. 11 p.

23. Ledinegg M. Instability of flow during natural and forced circulation // Die Warme 61, 1938. Vol. 8. Pp. 891–898.

24. Fisenko V.V. Kriticheskie dvukhfaznye potoki. M.: Atomizdat, 1978. 160 s.

Система Orphus

Loading...
Up