Mathematical method for calculating the risk of power flows exceeding the tie lines capacity in the problem of adequacy assessment

Publication type Article
Status Published
Ural Branch of RAS
Ural Federal University
Address: Russian Federation, Yekaterinburg
Affiliation: Ural Federal University
Address: Russian Federation, Yekaterinburg
Journal nameIzvestiia Rossiiskoi akademii nauk. Energetika
EditionIssue 5

The integration of new technologies and changing of principles of power system’s control and operation have led to the necessity for increasing the level of details of the data and representation used in the models for planning power system future perspectives. Because of this fact, the computation burden of the traditionally used Monte Carlo simulation technique (MCS) has become significant even in terms of long term planning. Analytical method that allows to speed up calculations of generation adequacy indices such as the risk of exceeding tie lines capacity constraints by power flows is proposed in the article. The proposed approach is based on Lagrange multipliers method applied for random values. In accordance to the test calculations the proposed method requires less computation time and enough accurate in comparison to MCS.

KeywordsPower systems, adequacy, adequacy indices, power imbalance, Lagrange multiplier method, Monte Carlo simulation, correlation matrix
Publication date10.01.2019
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1409

Readers community rating: votes 0

1. Voropaj N.I., Kovalev G.F., Kucherov Yu.N. Kontseptsiya obespecheniya nadezhnosti v ehlek‑ troehnergetike. M.: ID“Ehnergiya”, 2013. 212 c.

2. Rudenko Yu.N., Chel'tsov M.B. Nadezhnost' i rezervirovanie v ehlektroehnergeticheskikh sistemakh. Novosibirsk: Nauka: 1974. 263 s.

3. Nadezhnost' sistem ehnergetiki i ikh oborudovaniya. Spr. 4 t. / Pod obschej red. Yu.N. Rudenko. T. 2. Nadezhnost' ehlektroehnergeticheskikh sistem. Spr./ Pod red. M.N. Rozanova. – M.: Ehnergoatomizdat, 2000. 568 s.

4. Rudenko Yu.N., Ushakov I.A. Nadezhnost' sistem ehneregtiki. Novosibirsk: Nauka, 1989. 328 c.

5. Chukreev Yu.Ya. Modeli obespecheniya nadezhnosti ehlektroehnergeticheskikh sistem. Syk‑ tyvkar: Izd-vo Komi NTs UrO RAN, 1995. 176 s.

6. Oboskalov V.P. Nadezhnost' obespecheniya balansa moschnosti ehlektroehnergeticheskikh sistem. Ekaterinburg: GOU UGTU, 2002. 217 c.

7. Kovalev G.F., Lebedeva L.M. Nadezhnost' sistem ehlektroehneregtiki. Novosibirsk: Nauka, 2015. 224 s.

8. Rozanov M.N. Upravlenie nadezhnost'yu ehlektroehnergeticheskikh sistem. Novosibirsk: Nauka, 1991. 208 s.

9. Kucherov Yu.N., Kucherova O.M., Tarasov E.D.i dr. Otsenka rezhimnoj nadezhnosti ehlek‑ tricheskikh sistem s uchetom propusknoj sposobnosti // Ehkonomichnost' i nadezh‑ nost' funktsionirovaniya ehlektroehnergeticheskikh sistem. Novosibirsk: Nauka, 1986. S. 120–126.

10. Shepilov O.N., Domyshev A.V., Osak A.B. Sovremennye metody i programmy anali‑ za rezhimnoj nadezhnosti EhEhS pri mnozhestvennykh otkazakh s uchetom srabatyvaniya protivoavarijnoj avtomatiki // Izv. vuzov. Problemy ehnergetiki. 2008. № 11–12. S. 170–178.

11. Snizhenie riskov kaskadnykh avarij v ehlektroehnergeticheskikh sistemakh / Pod. red. N.I. Voropaya. Novosibirsk: Izd-vo SO RAN, 2011. 303 s.

12. Billinton R., Wenyan L. Reliability assessment of electric power systems using Monte Carlo methods. New York: Springer, 1994. 361 s.

13. Ehndreni D. Modelirovanie pri raschetakh nadezhnosti v ehlektroehnergeticheskikh siste‑ makh. M.: Ehnergomatizdat, 1983. 336 s.

14. European Union. Identification of Appropriate Generation and System Adequacy Standards for the Internal Electricity Market. 2014. 141 s.

15. Voropaj N.I. Nadezhnost' sistem ehnergetiki. (Sb. rekomenduemykh terminov). M.: IATs “Ehnergiya,” 2007. 192 s.

16. Ding Y., Wang P., Goel L., Billinton R., Karki R. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques/ // Electric Power Systems Research. 2007.V. 77. P. 1665–1671.

17. Pourbeik P. et al. Review of the current status of tools and techniques for risk-based and probabilistic planning in power systems. Paris: CIGRE, 2010. 132 s.

18. Lopes V. Impact of the combined integration of wind generation and small hydropower plants on the system reliability / V. Lopes, C. Borges // IEEE Transact on Sustainable Energy. 2014. V. 6. P. 1169–1177.

19. Zhao Q, Wang P, Goel L, Ding Y. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration // IET Gener. Transm. Distrib. 2014. V.8 P. 421–43017.

20. Hong Y-Y, Lin F-J, Lin Y-C, Hsu F-Y. Chaotic PSO-based VAR control considering renewables using fast probabilistic power flow // IEEE Transact. on Power Delivery. 2014. V. 29. P. 1666–1674.

21. Chukreev Yu.Ya., Chukreev M.Yu. Modeli otsenki pokazatelej balansovoj nadezhnosti pri upravlenii razvitiem ehlektroehnergeticheskikh sistem. Syktyvkar: Komi nauchnyj tsentr UrO RAN, 2014. 207 c.

22. Zorkal'tsev V.I., Perzhabinskij S.M. Model' optimizatsii defitsita moschnosti ehlektroehnergeticheskoj sistemy // Upravlenie bol'shimi sistemami. 2010. T. 30.1. S. 300–318.

23. Conti S., Rizzo S. Monte carlo simulation by using a systematic approach to assess distribution system reliability considering intentional islanding // IEEE Transact. on Power Delivery. 2014. V. 30. P. 64–73.

24. Hadi Sadeghi, Masoud Rashidinejad, Amir Abdollahi. A comprehensive sequential review study through the generation expansion / Renewable and Sustainable Energy Reviews. 2017. V. 67. P. 1369–1394.

25. Mogirev V.V. Algoritm i programma vychislenij pokazatelej nadezhnosti ehlektro‑ ehnergeticheskikh sistem metodom statisticheskogo modelirovaniya (Programma «Po‑ tok») // Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem ehnerge‑ tiki. Vyp 4. Irkutsk: SEhI SO AN SSSR, 1975. S. 24–35.

26. Gmurman V.E. Teoriya veroyatnostej i matematicheskaya statistika. M.: YuRAJT, 2016. 479 c.

27. Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezh‑ nosti. M.: Nauka, 1965.

28. Hong Y-Y, Liao W-J. Optimal passive filter planning considering probabilistic parameters using cumulant and adaptive dynamic clone selection algorithm // Intern. J. of Electrical Power & Energy Systems. 2013. V. 45. P. 159–166.

29. Preece R., Huang K., Milanovic J.V. Probabilistic small-disturbance stability assessment of uncertain power systems using efficient estimation methods / // IEEE Transact. on Power Systems. 2014. V. 29. P. 2509–2517.

30. Oboskalov V.P. Rezervy moschnosti v ehlektroehnergeticheskikh sistemakh. Sverdlovsk: Izd. UPI, 1989, 92 s.

31. Oboskalov V.P. Nadezhnost' obespecheniya balansa moschnosti ehlektroehnergeticheskikh sistem. Ekaterinburg: GOU VPO UGTU-UPI, 2002. 210 s.

32. Allan R.N., Late da Silva A-M., Burchett R.C. Evaluations methods and accuracy in probabilistic load flow solutions // IEEE Transactions on Power Apparatus and Systems. PAS‑100(5). May 1981. R. 2539–2546.

33. Borkouska B. Probabilitic load flow // IEEE Paper No. T73 485-0. Meeting. Vancouver. February 1973.

34. Madrigal M., Ponnambalam K., Quintana V.H. Probabilistic optimal power flow / Electrical and Computer Engineering, 1998. IEEE Canadian Conf. 25–28 May 1998. P. 385–388. INSPEC Accession Number: 6090672.

35. Schellenberg A., Rosehart W., Aguado J. Introduction to cumulant-based probabilistic optimal power flow (P-OPF) // IEEE Transact. on Power Systems 2005. V. 20. P. 1184–1186.

36. Mid-term adequacy forecas. ENTSO-E, 2016. 144 p.

37. Morteza Aien, Ali Hajebrahimi, Mahmud Fotuhi-Firuzabad. A comprehensive reviewon uncertainty modeling techniques in power system studies / // Renewable and Sustainable Energy Reviews. 2016. № 57. P. 1077–1089.

Система Orphus