Early Deсline in Rat Soleus Passive Tension with Hindlimb Unloading: Inactivation of Cross-bridges or Activation of Calpains?

 
PIIS086956520001751-9-1
DOI10.31857/S086956520001390-2
Publication type Article
Status Published
Authors
Affiliation: Institute of Biomedical Problems, RAS
Address: Russian Federation, Moscow
Affiliation: Institute of Biomedical Problems, RAS
Address: Russian Federation, Moscow
Affiliation: Institute of Biomedical Problems, RAS
Address: Russian Federation, Moscow
Affiliation: Institute of Mechanics, M.V. Lomonosov Moscow University
Address: Russian Federation
Affiliation: Institute of Biomedical Problems, RAS
Address: Russian Federation, Moscow
Affiliation: Institute of Biomedical Problems, RAS
Address: Russian Federation, Moscow
Journal nameDoklady Akademii nauk
Edition
Pages333-335
Abstract

The study was aimed at testing the hypotheses about the role of the cross- bridges and calpains in reduction of rat soleus passive tension under conditions of hindlimb unloading. To this end, we used an inhibitor of μ-calpain PD 150606 as well as a blocker of acto-myosin interaction (blebbistatin). It was found for the first time that a decrease in passive tension of rat soleus after 3-day hindlimb unloading is associated with the activity of μ-calpain, and does not depend on the processes of cross-bridges formation.

Keywords
Received16.10.2018
Publication date13.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1238

Readers community rating: votes 0

1. Canon F., Goubel E. // Pflugers Arch. 1995. V. 429. P. 332–337.

2. McDonald K.S., Fitts R.H. // J. Appl. Physiol. 1995. V. 79. P. 1796–1802.

3. Toursel T., Stevens L., Granzier H., Mounier Y. // J. Appl. Physiol. 2002. V. 92. P. 1465–1472.

4. Ogneva I. // J. Appl. Physiol. 2010. V. 109. P. 1702-1709.

5. Ogneva I.V., Ponomareva E.V., Altaeva E.G., Fokina N.M., Kurushin V.A., Kozlovskaya I.B., Shenkman B.S. // Acta Astronautica. 2011. V. 68. P. 1478–1485.

6. Salazar J.J., Michele D.E., Brooks S.V. // J. Appl. Physiol. 2011. V. 108. P. 120–127.

7. Riley D.A., Bain J.L.W., Romatowski J.G., Fitts R.H. // Am. J. Physiol. Cell. Physiol. 2005. V. 288. P. C360–C365.

8. Shenkman B.S., Belova S.P., Lomonosova Y.N., Kostrominova T.Y., Nemirovskaya T.L. // Arch. Biochem. Biophys. 2015. V. 584. P. 36-41.

9. Kovacs M., Toth J., Hetenyi C., Malnasi-Csizmadia A., Sellers J.R. // J. Biol. Chem. 2004. V. 279, № 34, P. 35557–35563.

10. Granzier H.L., Wang K. // Biophys J. 1993. V. 65. P. 2141–2159.

11. Campbell K.S., Lakie M. // J. Physiol. 1998. V. 510. P. 941–962.

12. Whitehead N.P., Gregory J.E., Morgan D.L., Proske U. // J. Physiol. 2001. V. 536. P. 893–903.

13. Irving T., Wu Y., Bekyarova T., Farman G.P., Fukuda N., Granzier H. // Biophys J. 2011. V. 100. P. 1499–508.

14. Muhle-Goll C., Habeck M., Cazorla O., Nilges M., Labeit S., Granzier H. // J. Mol. Biol. 2001. V. 313. P. 431–447.

15. Grison M., Merkel U., Kostan J., Djinović-Carugo K., Rief M. // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P.1015–1020.

Система Orphus

Loading...
Up