Striped Structure of the Droplet Matter Distribution in Targeted Fluid

 
PIIS086956520001192-4-1
DOI10.31857/S086956520001192-4
Publication type Article
Status Published
Authors
Affiliation: Federal State Budget Scientific Institution A.Yu. Ishlinsky Institute for Problems in Mechanics of RAS
Affiliation: Federal State Budget Scientific Institution A.Yu. Ishlinsky Institute for Problems in Mechanics of RAS
Journal nameDoklady Akademii nauk
EditionVolume 481 Issue 2
Pages145-150
Abstract

The process of establishing the line distribution of a droplet material at the freely falling dyed droplet, submerging into a liquid at rest, was observed for the first time by means of methods of high-resolution photography. Flow patterns of mixing fluids (drops of brilliant green and alizarin ink falling into the water) include vertical fibers on the surface of the crown and netlike structures at the bottom of the cavity. The linear character of the distribution of the soluble admixture along the surface of the cavity and the crown was observed in all the experiments (more than 500) in a wide range of medium viscosities, sizes and droplet velocities at the time of contact with the target liquid. The dependence of the emerging structure parameters on the Weber number was traced.

Keywordsdrop, splash, material transfer, inhomogeneous distribution
Received12.10.2018
Publication date14.10.2018
Number of characters706
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1709

Readers community rating: votes 0

1. Thomson J.J., Newall H.F. On the Formation of Vortex Rings by Drops Falling into Liquids, and Some Allied Phenomena // Proc. R. Soc. London. 1885. V. 29. P. 417-436.

2. Edgerton H.E., Killian J. R. Flash! Seeing the Unseen by Ultra High-Speed Photography. Boston: Hale, Cushman & Flint, 1939. 203 p.

3. Thoroddsen S. T., Etoh T. G., Takehara K. High-Speed Imaging of Drops and Bubbles // Annu. Rev. Fluid Mech. 2008. V. 40. P. 257–285.

4. Prosperetti A., Oguz H.N. The Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain // Annu. Rev. Fluid Mech. 1993. V. 25. P. 577–602.

5. Koroteev A.A., Bondareva N.V., Nagel' Yu.A., Filatov N.I., Bajdenko I.V. Zakonomernosti vzaimodejstviya kapel' sverkhvysokovakuumnykh teplonositelej s poverkhnostyami ulovitelej beskarkasnykh sistem teplootvoda v kosmose // Teplofizika i aehromekhanika. 2016. T. 23. № 6. S. 915-922.

6. Lan M., Wang X., Zhu P., Chen P. Experimental Study on the Dynamic Process of a Water Drop with Additives Impact upon Hot Liquid Fuel Surfaces // Energy Procedia. 2015. V. 66. P. 173 – 176.

7. Fitt, B. D. L., McCartney, H. A., Walkalate, P. The Role of Rain in Dispersal of Pathogen Inoculum // Annu. Rev. Phytopathol. 1989. V. 27. P. 241–270.

8. Chashechkin Yu.D., Prokhorov V.E. Tonkaya struktura vspleska pri padenii kapli na svobodnuyu poverkhnost' pokoyaschejsya zhidkosti. DAN. 2011. T.436. № 6. S. 768-773.

9. Chashechkin Yu.D., Il'inykh A.Yu. Kapillyarnye volny na poverkhnosti pogruzhayuschejsya v zhidkost' kapli //DAN. 2015. T. 465. № 4. C. 548-554.

10. Agbaglah G., Thoraval M.-J., Thoroddsen S.T., Zhang L.V., Fezzaa K., Deegan R.D. Drop Impact into a Deep Pool: Vortex Shedding and Jet Formation // J. Fluid Mech. 2015. V. 764. R1-R12.

11. Chashechkin Yu. D. Differential Fluid Mechanics – Harmonization of Analytical, Numerical and Laboratory models of Flows. // Math. Modeling and Optim. Complex Struct. Springer Ser. Comput. Methods Appl. Sci. 2016. V. 40. P. 61-91.

12. Ehjzenberg D. Kautsman V. Struktura i svojstva vody. L.: Gidrometeoizdat, 1975. 258 s.

Система Orphus

Loading...
Up