On the Finiteness of Hyperelliptic Fields with the Special Properties and Periodic Expansion of √f

 
PIIS086956520003431-7-1
DOI10.31857/S086956520003431-7
Publication type Article
Status Published
Authors
 
Affiliation: Scientific Research Institute for System Analysis, RAS
Address: Russian Federation
Affiliation: Scientific Research Institute for System Analysis, RAS
Address: Russian Federation
Affiliation: Scientific Research Institute for System Analysis, RAS
Address: Russian Federation
Affiliation: Scientific Research Institute for System Analysis, RAS
Address: Russian Federation
Journal nameDoklady Akademii nauk
EditionVolume 483 Issue 6
Pages609-613
Abstract

We prove the finiteness of the set of square-free polynomials f ∈ k[x] of odd degree, distinct from 11, considered up to a natural equivalence relation for which the continued fraction expansion of the irrationality √f(x) in k((x)) is periodic and the corresponding hyperelliptic field k(x)(√f) contains an S-unit of degree 11. Moreover it was proved for k = Q that there are no polynomials of odd degree distinct from 9 and 11, satisfying the conditions mentioned above.

Keywords
Received26.12.2018
Publication date26.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 2032

Readers community rating: votes 0

1. Abel N.H. Ueber die Integration der Dierential-Formel pdx=vR wenn R und p ganze Functionen sind // Journal fur die reine und angewandte Mathematik. 1826. Vol. 1. P. 185221.

2. Tchebiche P. Sur l'integration des dierentielles qui contiennent une racine carree d'un polynome du troisieme ou du quatrieme degre' // Journal des math. pures et appl. 1857. Vol. 2. P. 168192.

3. Platonov V. P. Teoretiko-chislovye svojstva giperehllipticheskikh polej i problema krucheniya v yakobianakh giperehllipticheskikh krivykh nad polem ratsional'nykh chisel // UMN. 2014. T. 69:1, № 415. S. 338.

4. Schmidt Wolfgang M. On continued fractions and Diophantine approximation in power series elds // Acta arithmetica. 2000. Vol. 95, no. 2. P. 139166.

5. Platonov V. P., Petrunin M. M. S-edinitsy v giperehllipticheskikh polyakh i periodichnost' nepreryvnykh drobej // DAN. 2016. T. 470, № 3. S. 260265.

6. Platonov V. P., Petrunin M. M. S-edinitsy i periodichnost' v kvadratichnykh funktsional'nykh polyakh // UMN. 2016. T. 71, № 5. S. 181182.

7. Petrunin M. M. S-edinitsy i periodichnost' kvadratnogo kornya v giperehllipticheskikh polyakh. 2017. T. 474, № 2. S. 155158.

8. Platonov V. P., Fedorov G. V. O periodichnosti nepreryvnykh drobej v ehllipticheskikh polyakh // DAN. 2017. T. 475, № 2. S. 133136.

9. Platonov V. P., Fedorov G. V. O probleme periodichnosti nepreryvnykh drobej v giperehllipticheskikh polyakh // Matematicheskij sbornik. 2018. T. 4, № 209. S. 5494.

10. Platonov V. P., Fedorov G. V. O periodichnosti nepreryvnykh drobej v giperehllipticheskikh polyakh // DAN. 2018. T. 474, № 5. S. 540544.

11. Platonov V. P., Petrunin M. M. Fundamental'nye S-edinitsy v giperehllipticheskikh polyakh i problema krucheniya v yakobianakh giperehllipticheskikh krivykh // DAN. 2015. T. 465, № 1. S. 2325.

12. Benyash-Krivets V. V., Platonov V. P. Gruppy S-edinits v giperehllipticheskikh polyakh i nepreryvnye drobi // Matematicheskij sbornik. 2009. T. 200, № 11. S. 1544.

13. Platonov V. P., Petrunin M.M. Gruppy S-edinits i problema periodichnosti nepreryvnykh drobej v giperehllipticheskikh polyakh // Sbornik statej, Tr. MIAN, 2018. T. 302, S.

Система Orphus

Loading...
Up