Compressible Finite Groups of Birational Automorphism

 
PIIS086956520003127-2-1
DOI10.31857/S086956520003127-2
Publication type Article
Status Published
Authors
Affiliation: Steklov Mathematical Institute, RAS
Address: Russian Federation,
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 1
Pages16-18
Abstract

The compressibility of certain types of nite groups of birational automorphisms of algebraic varieties is established.

Keywords
Received04.11.2018
Publication date04.11.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1205

Readers community rating: votes 0

1. Blanc J. Finite Abelian subgroups of the Cremona group of the plane // Theese No 3777. 2006. Geneve. arXiv:math.AG/0610368.

2. Dolgachev I. V., Iskovskikh V. A. Finite subgroups of the plane Cremona group // Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin, V. I. Progress in Math., 2009. V. 269. Boston: Birkhauser Boston. P. 443-548.

3. Kulikov Vik. S., Shustin E. I. O G-zhestkikh poverkhnostyakh // Tr. MIAN, 2017. T. 298. S. 144-164.

4. Popov V. L. Jordan groups and automorphism groups of algebraic varieties // Automorphisms in Birational and Ane Geometry. Springer Proceedings in Mathematics & Statistics. 2014. V. 79. Heidelberg: Springer. P. 185-213.

5. Popov V. L. Konechnye podgruppy grupp diffeomorfizmov // Tr. MIAN. 2015. T. 289. S. 235-241.

6. Popov V. L. Question session. Cremona Conference. Basel. Switzerland. September 516. 2016. https://algebra.dmi.unibas.ch/blanc/cremonaconference/index.html.

7. Popov V. L. Borelevskie podgruppy grupp Kremony // Matem. zametki. 2017. T. 102(1). S. 72-80.

8. Przhiyalkovskij V. V., Shramov K. A. Dvojnye kvadriki s bol'shimi gruppami avtomor- fizmov // Tr. MIAN. 2016. T. 294, S. 167-190.

9. Prokhorov Yu. G. O trekhmernykh G-mnogoobraziyakh Fano // Izv. RAN. Ser. matem. 2015. T. 79(4). S. 159-174.

10. Prokhorov Yu., Shramov C. Jordan constant for Cremona group of rank 3 // Mosc. Math. J. 2017. v. 17. No. 3. P. 457-509.

11. Reichstein Z. On the notion of essential dimension for algebraic groups // Transform. Groups. 2000. V. 5. No. 3. P. 265-304.

12. Reichstein Z., Youssin B. Essential dimensions of algebraic groups and a resolution theorem for G-varieties// Canad. J. Math. 2000. V. 52. No. 5, P. 1018-1056.

13. Reichstein Z. Compression of group actions // Invariant Theory in All Characteristics. CRM Proceedings and Lecture Notes. 2004. V. 35. Providence. RI: AMS. P. 199-202.

Система Orphus

Loading...
Up